562 research outputs found

    Wideband Limit Study of a GaN Power Amplifier Using Two-Tone Measurements

    Get PDF

    Impacto e compensação da largura de banda vídeo em amplificadores de potência de elevado rendimento

    Get PDF
    The aim of this work is to determine, quantify and model the performance degradation of wideband power amplifiers when subject to concurrent multiband excitation, with a particular focus on the average efficiency variation. The origins of this degradation are traced to two main transistor properties: the output baseband current generation by the nonlinear transconductance, and the input baseband current generation by the nonlinear gate-source capacitance variation. Each mechanism is analised separately, first by providing a qualitative and intuitive explanation of the processes that lead to the observed efficiency degradation, and then by deriving models that allow the prediction of the average efficiency dependence with the input signal bandwidth. The resulting knowledge was used to improve matching network design, in order to optimize baseband impedance terminations and prevent the efficiency degradation. The derived models were experimentally validated with several PA prototypes implemented with Gallium Nitride HEMT devices, using both conventional and optimized baseband impedance matching networks, achieving over 400MHz instantaneous bandwidth with uncompromised efficiency. The consolidation of the wideband degradation mechanisms described in this work are an important step for modelling and design of wideband, high-efficiency power amplifiers in current and future concurrent multi-band communication systems.O objetivo deste trabalho é determinar, quantificar e modelar a degradação do desempenho de amplificadores de banda-larga quando submetidos a excitação multi-banda concorrente, com particular ênfase na variação do rendimento energético. As origens desta degradação são devidas a duas das principais propriedades do transístor: a geração de corrente em banda-base na saída pela variação não-linear da transcondutância, e a geração de corrente de banda-base na entrada pela variação não-linear da capacidade interna porta-fonte. Cada um destes mecanismos é analisado isoladamente, primeiro por uma explicação qualitativa e intuitiva dos processos que levam à degradação de eficiência observada e, em seguida, através da derivação de modelos que permitem a previsão da degradação do rendimento médio em função da largura de banda do sinal de entrada. O conhecimento resultante foi utilizado para melhorar o desenvolvimento de malhas de adaptação, por forma a otimizar as terminações de impedância em banda-base e prevenir a degradação do rendimento. Os modelos desenvolvidos foram validados experimentalmente em vários amplificadores de potência implementados com transístores de tecnologia GaN HEMT, utilizando malhas de adaptação convencionais e otimizadas, onde se obteve 400MHz de largura de banda instantânea sem degradação do rendimento. A consolidação dos mecanismos de degradação descritos neste trabalho são um importante passo para a modelação e projeto de amplificadores de elevado rendimento e largura-debanda para os sistemas de comunicação multi-banda concorrente convencionais e do futuro.Programa Doutoral em Engenharia Eletrotécnic

    Advanced High Efficiency and Broadband Power Amplifiers Based on GaN HEMT for Wireless Applications

    Get PDF
    In advanced wireless communication systems, a rapid increase in the mobile data traffic and broad information bandwidth requirement can lead to the use of complex spectrally efficient modulation schemes such as orthogonal frequency-division multiplexing (OFDM). Generally, complex non-constant envelope modulated signals have very high peak-to-average ratios (PAPR). Doherty Power Amplifier (DPA) is the most commonly used power amplifier (PA) architecture for meeting high efficiency requirement in advanced communication systems, in the presence of high PAPR signals. However, limited bandwidth of the conventional DPA is often identified as a bottleneck for widespread deployment in base-station application for multi-standard communication signals. The research in this thesis focuses on the development of new designs to overcome the bandwidth limitations of a conventional PA. In particular, the bandwidth limitation factors of a conventional DPA architecture are studied. Moreover, a novel design technique is proposed for DPA’s bandwidth extension. In the first PA design, limited bandwidth and linearity problems are addressed simultaneously. For this purpose, a new Class-AB PA with extended bandwidth and improved linearity is presented for LTE 5 W pico-cell base-station over a frequency range of 1.9–2.5 GHz. A two-tone load/source-pull and bias point optimization techniques are used to extract the sweet spots for optimum efficiency and linearity from the 6 W Cree GaN HEMT device for the whole frequency band. The realized prototype presented saturated PAE higher than 60%, a power gain of 13 dB and an average output power of 36.5 dBm over the desired bandwidth. The proposed PA is also characterized by QAM-256 and LTE input communication signals for linearity characterization. Measured ACPRs are lower than -40 dBc for an input power of 17 dBm. The documented results indicate that the proposed Class-AB architecture is suitable for pico-cell base-station application. In the second PA design, an inherent bandwidth limitation of Class-F power amplifier forced by the improper load harmonics terminations at multiple harmonics is investigated and analyzed. It is demonstrated that the impedance tuning of the second and third harmonics at the drain terminal of a transistor is crucial to achieve a broadband performance. The effect of harmonics terminations on power amplifier’s bandwidth up to fourth harmonics is investigated. The implemented broadband Class-F PA achieved maximum saturated drain efficiency 60-77%, and 10 W output power throughout (1.1-2.1 GHz) band. The simulated and measured results verify that the presented Class-F PA is suitable for a high-efficiency system application in wireless communications over a wide range of frequencies. In the third PA design, a single- and dual-input DPA for LTE application in the 3.5 GHz frequency band are presented and compared. The main goal of this study is to improve the performance of gallium–nitride (GaN) Doherty transmitters over a wide bandwidth in the 3.5 GHz frequency band. For this purpose, the linearity-efficiency trade-off for the two proposed architectures is discussed in detail. Simulated results demonstrate that the single- and dual-input DPA exhibited a peak drain efficiency (DE) of 72.4% and 77%, respectively. Both the circuits showed saturated output power more than 42.9 dBm throughout the designed band. Saturated efficiency, gain and bandwidth of dual-input DPA are higher than that of the single-input DPA. On the other side, dual-input DPA linearity is worse as compared to the single-input DPA. In the last PA design, a novel design methodology for ultra-wide band DPA is presented. The bandwidth limitation factors of the conventional Doherty amplifier are discussed on the ground of broadband matching with impedance variation. To extend the DPA bandwidth, three different methods are used such as post-matching, low impedance transformation ratio and the optimization of offset line for wide bandwidth in the proposed design. The proposed Doherty power amplifier was designed and realized based on two 10 W GaN HEMT devices from Cree Inc. The measured results exhibited 42-57% of efficiency at the 6-dB back-off and saturated output power ranges from 41.5 to 43.1 dBm in the frequency range of 1.15 to 2.35 GHz (68.5% fractional bandwidth). Moreover, less than -25 dBc ACPRs are measured at 42 dBm peak output power throughout the designed band. In a nutshell, all power amplifiers presented in this thesis are suitable for wideband operation and their performances are satisfying the required operational standard. Therefore, this thesis has a significant contribution in the domain of high efficiency and broadband power amplifiers

    Design of a wideband doherty power amplifier with high efficiency for 5g application

    Get PDF
    This paper discusses the design of a wideband class AB-C Doherty power amplifier suitable for 5G applications. Theoretical analysis of the output matching network is presented, focusing on the impact of the non-ideally infinite output impedance of the auxiliary amplifier in back off, due to the device’s parasitic elements. By properly accounting for this effect, the designed output matching network was able to follow the desired impedance trajectories across the 2.8 GHz to 3.6 GHz range (fractional bandwidth = 25%), with a good trade-off between efficiency and bandwidth. The Doherty power amplifier was designed with two 10 W packaged GaN HEMTs. The measurement results showed that it provided 43 dBm to 44.2 dBm saturated output power and 8 dB to 13.5 dB linear power gain over the entire band. The achieved drain efficiency was between 62% and 76.5% at saturation and between 44% and 56% at 6 dB of output power back-off

    Behavioral modeling techniques for power amplifier digital pre-distortion

    Get PDF
    Abstract. The dramatic increase in the capacity of telecommunication networks has increased the requirements of the devices, one example of which is the continuously widening bandwidth. Using broadband signals requires often high linearity from the transmitter — and especially from the power amplifier at the end of the transmitter chain — but at the same time, it should operate as efficiently as possible. The power amplifier is the most power consuming component in the transmitter and inherently nonlinear, so its linearization is an essential part of the overall system performance. Of the current linearization techniques, digital pre-distortion has established itself as the most common tool for providing better linearity and efficiency in a power amplifier and transmitter. In this thesis, the performance of power amplifier models used in digital pre-distortion was investigated and their differences compared to the more complex reference model used in the actual base station product. The aim of this thesis was to create a behavioral model that corresponds the physical component as accurately as the reference model. This behavioral model could be used for example to design and optimize a power amplifier and linearization algorithm without the need for the secret model for the product. This, in its turn, would result in more efficient work with third parties such as component vendors and reduce the linearization time. The performance parameters of the behavioral models were introduced at the beginning of the thesis. These were also used in later parts to analyse the measurement results. Power amplifier linearization measurements were performed under laboratory conditions on a MATLAB® test bench. From the results, it was found that the use of a simple memoryless behavioral model is not enough to describe the physical nonlinear component with sufficient accuracy. The results also showed that the complexity of the model reduces its accuracy if the model coefficients are not correctly positioned. In this thesis, we succeeded in creating a memory model that describes the reference model sufficiently accurately on several meters, taking into account also the memory effects of the power amplifier. This thesis thus provides a good basis for further development of the actual modeling tool for product projects.Tehovahvistimen käyttäytymistason mallinnustekniikat esisärötyksen tueksi. Tiivistelmä. Tietoliikenneverkkojen kapasiteetin räjähdysmäinen kasvu on lisännyt laitteiden vaatimuksia, joista yhtenä esimerkkinä on jatkuvasti suureneva kaistanleveys. Laajakaistaiset signaalit vaativat usein lähettimeltä — ja etenkin lähettimen loppupäässä olevalta tehovahvistimelta — korkeaa lineaarisuutta, mutta samalla sen on toimittava mahdollisimman tehokkaasti. Tehovahvistin on lähettimen eniten tehoa kuluttava komponentti ja luonnostaan epälineaarinen, joten sen linearisointi on oleellinen osa koko systeemin suorituskykyä. Nykyisistä linearisointitekniikoista digitaalinen esisärötys on vakiinnuttanut paikkansa yleisimpänä työkaluna paremman lineaarisuuden ja tehokkuuden saavuttamiseksi tehovahvistimessa. Tässä diplomityössä tutkittiin digitaalisessa esisärötyksessä käytettävien käyttäytymistason tehovahvistinmallien suorituskykyjä ja niiden eroja varsinaisessa tukiasematuotteessa käytettävään, monimutkaisempaan referenssimalliin verrattuna. Työn tavoitteena oli luoda käyttäytymismalli, jolla voidaan kuvata fyysistä komponenttia yhtä tarkasti kuin referenssimallilla. Mallia voitaisiin käyttää esimerkiksi uuden tehovahvistimen suunnittelussa ilman, että kaupalliseen tuotteeseen tulevaa, salaista referenssimallia on tarve käyttää. Näin voitaisiin tehostaa työskentelyä ulkopuolisten tahojen, kuten komponenttitoimittajien kanssa ja vähentää linearisointiin käytettävää aikaa. Työn alussa esiteltiin käyttäytymismallien suorituskykyparametrit, joita käytettiin mittaustulosten analysointiin. Tehovahvistimien linearisointimittaukset suoritettiin laboratorio-olosuhteissa MATLAB®-testipenkissä. Mittauksissa todettiin, että yksinkertainen, muistiton käyttäytymismalli ei riitä kuvaamaan fyysistä komponenttia riittävän tarkasti. Tuloksista pääteltiin myös, että liian kompleksinen malli heikentää sen tarkkuutta. Työssä onnistuttiin luomaan muistillinen käyttäytymismalli, joka kuvaa referenssimallia riittävän tarkasti usealla eri mittarilla tarkastellen — huomioiden osaltaan myös tehovahvistimen muistiefektejä. Tämä opinnäytetyö tarjoaa siis hyvän pohjan varsinaisen mallinnustyökalun jatkokehitykselle tuoteprojekteihin

    Nonlinear Characterization of Wideband Microwave Devices and Dispersive Effects in GaN HEMTs

    Get PDF
    Measurements play a key role in the development of microwave hardware as they allow engineers to test and verify the RF performance on a system, circuit, and component level. Since modern cellular standards employ complex modulation formats with wider signal bandwidths to cope with the growing demand of higher datarates, nonlinear characterization using wideband stimuli is becoming increasingly important. Furthermore, III-N semiconductor technologies such as gallium nitride (GaN) are to a larger extent utilized to enable higher performance in microwave circuits. However, GaN is highly frequency-dispersive due to trapping phenomena and thermal effects. This thesis deals with the development of nonlinear measurement instruments as well as characterization of dispersive effects in GaN high-electron-mobility transistors (HEMTs).A measurement setup for wideband, nonlinear characterization of microwave devices has been designed and verified. The setup allows for simultaneous acquisition of low-frequency and radio-frequency signals from DC up to 4~GHz through the use of wideband signal generators and measurement receivers. This enables measurement scenarios such as multi-band load-pull and large-signal characterization of IQ-mixers, which can give useful insight into how to optimize the performance in a RF transmitter.Electrothermal characterization of GaN devices has been carried out using conventional measurement methods such as pulsed I-V, and it is shown that trapping phenomena and thermal effects due to self-heating or mutual coupling are challenging to separate. Multiple methods must be utilized to fully characterize both the large-signal and small-signal impact on device performance. A new characterization method has been developed, for extraction of thermal transfer functions between mutually coupled devices on e.g. a semiconductor wafer. The method does not require any DC-bias on the measured devices, which can potentially reduce the influence of trapping during characterization of thermal properties in materials

    Passive and active components development for broadband applications

    Get PDF
    Recently, GaN HEMTs have been proven to have numerous physical properties, resulting in transistors with greatly increased power densities when compared to the other well-established FET technologies. This advancement spurred research and product development towards power-band applications that require both high power and high efficiency over the wide band. Even though the use of multiple narrow band PAs covering the whole band has invariably led to better performance in terms of efficiency and noise, there is an associated increase in cost and in the insertion loss of the switches used to toggle between the different operating bands. The goal, now, of the new technology is to replace the multiple narrow band PAs with one broadband PA that has a comparable efficiency performance. In our study here, we have investigated a variety of wide band power amplifiers, including class AB PAs and their implementation in distributed and feedback PAs.Additionally, our investigation has included switching-mode PAs as they are well-known for achieving a relatively high efficiency. Besides having a higher efficiency, they are also less susceptible to parameter variations and could impose a lower thermal stress on the transistors than the conventional-mode PAs. With GaN HEMTs, we have demonstrated: a higher than 37 dBm output power and a more than 30% drain efficiency over 0.02 to 3 GHz for the distributed power amplifier; a higher than 30 dBm output power with more than a 22% drain efficiency over 0.1 to 5 GHz for the feedback amplifier; and at least a 43 dBm output power with a higher than 63% drain efficiency over 0.05 to 0.55 GHz for the class D PA. In many communication applications, however, achieving both high efficiency and linearity in the PA design is required. Therefore, in our research, we have evaluated several linearization and efficiency enhancement techniques.We selected the LInear amplification with Nonlinear Components (LINC) approach. Highly efficient combiner and novel efficiency enhancement techniques like the power recycling combiner and adaptive bias LINC schemes have been successfully developed and verified to achieve a combined high efficiency with a relatively high linearity

    RF to Millimeter-wave Linear Power Amplifiers in Nanoscale CMOS SOI Technology

    Get PDF
    The low manufacturing cost, integration capability with baseband and digital circuits, and high operating frequency of nanoscale CMOS technologies have propelled their applications into RF and microwave systems. Implementing fully-integrated RF to millimeter-wave (mm-wave) CMOS power amplifiers (PAs), nevertheless, remains challenging due to the low breakdown voltages of CMOS transistors and the loss from on-chip matching networks. These limitations have reduced the design space of CMOS power amplifiers to narrow-band, low linearity metrics often with insufficient gain, output power, and efficiency. A new topology for implementing power amplifiers based on stacking of CMOS SOI transistors is proposed. The input RF power is coupled to the transistors using on-chip transformers, while the gate terminal of teach transistor is dynamically biased from the output node. The output voltages of the stacked transistors are added constructively to increase the total output voltage swing and output power. Moreover, the stack configuration increases the optimum load impedance of the PA to values close to 50 ohm, leading to power, efficiency and bandwidth enhancements. Practical design issues such as limitation in the number of stacked transistors, gate oxide breakdown, stability, effect of parasitic capacitances on the performance of the PA and large chip areas have also been addressed. Fully-integrated RF to mm-wave frequency CMOS SOI PAs are successfully implemented and measured using the proposed topology

    Linearization of RF Power Amplifiers Using an Enhanced Memory Polynomial Predistorter

    Get PDF

    Behavioral modelling of GaN RF-power amplifier

    Get PDF
    Abstract. In this thesis memory effects and nonlinearities of Gallium Nitride (GaN) Doherty power amplifier (PA) were studied for measurement based behavioral modelling purposes. In SoC simulations a PA model is needed to simulate the performance of different linearization algorithms and to optimize the digital pre-distortion (DPD) design to cancel the memory effects of the PA, thus the model needs to be capable of modelling the memory effects sufficiently. Aim was to study if there were any differences in power amplifiers behavior and memory effects between time division duplexing (TDD) and frequency division duplexing (FDD) and what kind of model topologies are needed to model the PA sufficiently. In this thesis, two PAs were measured in different operation modes. Characterization setup was built, and an equalizer was characterized to remove the frequency selectivity of the test setup to obtain more accurate measurement results. Two signal bandwidths of 20MHz and 100MHz were used to extract data from power amplifier output with FDD and TDD operation. A generalized memory polynomial was fitted to model the PAs and found to be sufficient to model FDD operation. However, with TDD operation generalized memory polynomial model was not as accurate due to complex memory effects such as thermal and trapping memory. Models were also validated by using a digital pre-distorter and compared with measurement results and the models seem to work well and provide adjacent channel power ratio (ACPR) of -53.5dBc on lower channel and -53.3dBc on upper channel with 100MHz signal.GaN RF-tehovahvistimen käyttäytymistason mallinnus. Tiivistelmä. Tässä työssä tutkittiin Galliumnitraatti (GaN) Doherty-tehovahvistimen (PA) muistiilmiöitä ja epälineaarisuutta mittauksiin perustuvaa käyttäytymistason mallinnusta varten. SoC-simuloinneissa tarvitaan PA-mallia erilaisten linearisointialgoritmien suorituskyvyn simuloimiseksi. Erityisesti digitaalisen esisäröttimen (DPD) suunnittelun optimoimiseksi tehovahvistimessa esiintyvän muistin kumoamiseksi mallin on pystyttävä mallintamaan muistia riittävällä tarkkuudella. Työn tavoitteena oli selvittää, onko tehovahvistimien käyttäytymisessä ja muisti-ilmiöissä eroja aika- ja taajuusdupleksoinnin (TDD, FDD) välillä ja millaisia mallitopologioita tarvitaan, jotta tehovahvistinta voidaan mallintaa riittävällä tarkkuudella. Tässä työssä käytettiin kahta tehovahvistinta eri toimintatilojen mittaamiseen. Työssä rakennettiin mittausympäristö ja lisättiin taajuuskorjain kumoamaan mittausympäristön taajuusselektiivisyyttä. Kahta signaalinkaistanleveyttä 20 MHz:a ja 100 MHz:ä käytettiin datan keräämiseen tehovahvistimen ulostulosta aika- ja taajusjakoista dupleksointia käyttäen. Tehovahvistimen mallintamiseen sovitettiin muistipolynomi, jonka todettiin olevan riittävän tarkka FDD-toiminnan mallintamiseen, mutta TDD-toiminnassa malli ei ollut yhtä tarkka monimutkaisten muisti-ilmiöiden, kuten lämpö- ja elektronien ansoitusmuistin, vuoksi. Mallit validoitiin myös käyttämällä digitaalista esisärötystä ja niitä verrattiin mittaustuloksiin. Mallit näyttävät toimivan hyvin ja tuottavan vierekkäisen kanavan tehosuhteen (ACPR) -53,5dBc alemmalla kanavalla ja -53,3dBc ylemmällä kanavalla 100MHz signaalilla
    corecore