120 research outputs found

    Aperture-Level Simultaneous Transmit and Receive (STAR) with Digital Phased Arrays

    Get PDF
    In the signal processing community, it has long been assumed that transmitting and receiving useful signals at the same time in the same frequency band at the same physical location was impossible. A number of insights in antenna design, analog hardware, and digital signal processing have allowed researchers to achieve simultaneous transmit and receive (STAR) capability, sometimes also referred to as in-band full-duplex (IBFD). All STAR systems must mitigate the interference in the receive channel caused by the signals emitted by the system. This poses a significant challenge because of the immense disparity in the power of the transmitted and received signals. As an analogy, imagine a person that wanted to be able to hear a whisper from across the room while screaming at the top of their lungs. The sound of their own voice would completely drown out the whisper. Approaches to increasing the isolation between the transmit and receive channels of a system attempt to successively reduce the magnitude of the transmitted interference at various points in the received signal processing chain. Many researchers believe that STAR cannot be achieved practically without some combination of modified antennas, analog self-interference cancellation hardware, digital adaptive beamforming, and digital self-interference cancellation. The aperture-level simultaneous transmit and receive (ALSTAR) paradigm confronts that assumption by creating isolation between transmit and receive subarrays in a phased array using only digital adaptive transmit and receive beamforming and digital self-interference cancellation. This dissertation explores the boundaries of performance for the ALSTAR architecture both in terms of isolation and in terms of spatial imaging resolution. It also makes significant strides towards practical ALSTAR implementation by determining the performance capabilities and computational costs of an adaptive beamforming and self-interference cancellation implementation inspired by the mathematical structure of the isolation performance limits and designed for real-time operation

    Étude du relais full-duplex dans les environnements intérieurs

    Get PDF
    Élargir la couverture des services du réseau aux endroits difficiles et aux régions éloignées est un besoin de plus en plus nécessaire de nos vies quotidiennes actuelles et futures. L'augmentation de la population et la demande accrue de services et de solutions de communication requièrent l'augmentation de la capacité des moyens de communication tout en permettant une couverture plus efficiente et plus étendue des territoires et régions faiblement peuplées dans le Canada et dans monde. Des études récentes ont confirmé que des interférences comme les interférences dans le même canal (ICC) et les interférences mutuelles (SI) ont un impact énorme sur les systèmes de communication sans fil et peuvent entraîner une dégradation significative des performances. Les techniques de relayage, dans lesquelles une source émettrice communique avec un récepteur destinataire l'aide d'un noeud intermédiaire, ont été introduites comme des solutions pour répondre au besoin croissant de débits plus élevés et de couverture étendu pour les communications sans fil. En tant que tel, il est essentiel de concevoir des systèmes de relais capables non seulement d'offrir une grande efficacité spectrale du signal radio, mais aussi de bénéficier pleinement des facilités de la diversité antennaire. Pour répondre à cet objectif, ce mémoire présente une étude sur une technique originale de réduction et d'annulation des interférences induite par un relayage quasi instantané sur un même signal radio en utilisant les antennes multiples du relais. Transmettre et recevoir simultanément le même signal radio au niveau du relais, créent une auto-interférence en raison des signaux de bouclage. Le défi principal de la mise en oeuvre du relais est d'atténuer et d'annuler la destruction ou la perte de l'information relayée. L'originalité de du travail réside dans la proposition d'un algorithme efficace utilisant une double projection 1 'une à 1' entrée du relais et une autre à la sortie du relais. Les résultats obtenus démontrent une réduction significative des interférences comparativement à d'autres travaux

    Étude et positionnement utilisant le réseau de capteur sans fil dans un environnement minier souterrain

    Get PDF
    La sécurité et la communication posent des problèmes majeurs auxquels il faut remédier dans les environnements hostiles comme les mines souterraines. Pour une communication fiable ainsi que pour tracer la position exacte d’un objet dans les mines souterraines, différentes technologies ont été déployé. Parmi ces dernières, le réseau de capteurs sans fil est considéré comme un outil prometteur pour les applications basées sur la localisation, à savoir, la surveillance des lieux, le repérage des mobiles et la navigation. En fait, les réseaux de capteur sans-fil fournissent une couverture d’une vaste gamme d’équipements fiables, efficaces, tolérants aux défaillances et évolutives. Cependant, les travaux de recherches précédents ont divisé la localisation en deux parties: les méthodes basées sur la portée et celles non-basées sur la portée. Où la première est précise et coûteuse tandis que la deuxième est présentée pour réduire la quantité d’énergie consommée du côté capteur dont les ressources sont limitées. Notre recherche se focalise sur la localisation basée sur la portée utilisant le réseau de capteurs sans fil dans les milieux internes et mines souterrains. Plusieurs techniques ont été proposées pour la localisation comme la réception de l'indicateur de force de signal (RSSI), le temps d'arrivée (TOA), la différence de temps d'arrivée (TDOA), l'angle d'arrivée (AOA). Bien que plusieurs travaux de recherches utilisant ces techniques aient été exécutés, l'approche de localisation à base de temps pour les environnements complexe comme la mine souterraine demeure limitée. Cette thèse offre de nouvelles solutions pour combler l’écart entre la localisation à base de temps et le réseau de capteurs sans fil à haute précision, pour l’environnement minier souterrain. De plus, nous avons utilisé une technologie émergente, à savoir les communications ultra-large bande, pour booster la performance et l'exactitude. Notre travail de recherche est subdivisé en deux principales parties : une partie simulation et une partie pratique. Dans la première, nous avons utilisé MATLAB pour faire les différentes simulations. La deuxième partie consiste en plusieurs mesures pratiques réalisées dans un environnement intérieur ainsi que dans une mine souterraine. Les résultats montrent une amélioration remarquable et une meilleure précision de la technique UWB à base de temps

    Self-interference cancellation enabling high-throughput short-reach wireless full-duplex communication

    Get PDF
    In-band full-duplex (FD) wireless communication allows the simultaneous transmission and reception of data at the same frequency band, effectively doubling the spectral efficiency and data rate while reducing the latency. Previously published designs mostly target the self-interference (SI) cancellation in conventional wireless systems. In this paper, we focus on real-time SI cancellation for short-reach wireless FD systems. The superior signal quality of a point-to-point short-reach wireless system, allows the utilization of wideband communications to achieve a high throughput. Besides, in such wireless systems, the impacts of phase noise and nonlinear distortions are largely reduced, easing the SI cancellation. Moreover, the degradation of signal reception quality due to FD operation is experimentally evaluated in different environments. Experimental results of a prototype implementation show that a combination of antenna isolation and digital cancellation can already achieve an overall SI cancellation performance of 72.5 dB over a bandwidth of 123 MHz. This prototype can support a high-data-rate FD communication link of close to 1 Gbps up to 300 cm with an error vector magnitude lower than -26 dB in a typical indoor environment

    Iterative Nonlinear Self-Interference Cancellation for In-Band Full-Duplex Wireless Communications Under Mixer Imbalance and Amplifier Nonlinearity

    Get PDF
    This paper presents an iterative estimation and cancellation technique for nonlinear in-band full-duplex transceivers with IQ imbalances and amplifier nonlinearities. The estimation process of the proposed scheme consists of three stages, namely, the channel response estimation, IQ imbalance estimation, and power amplifier and low-noise amplifier (LNA) nonlinearities estimation. For the estimation of the parameters and improvement of the accuracy, distortions are compensated by cancellation or inversion with the latest estimated parameters. On the one hand, the channel response is estimated on the time domain; on the other hand, the IQ imbalance and nonlinearities are estimated on the frequency domain for a more straightforward estimation and superior accuracy. In the cancellation process of the proposed scheme, the received signal is compensated with the estimated parameters of the LNA and receiver IQ imbalance before cancellation because the desired signal is received with a high-power self-interference and is distorted by the radiofrequency receiver impairments. Simulation results show that the proposed technique can achieve higher cancellation performance compared with the Hammerstein canceller when the LNA is saturated by the self-interference. Additionally, the performance of the proposed canceller converges much faster than that of the Hammerstein canceller

    High Capacity CDMA and Collaborative Techniques

    Get PDF
    The thesis investigates new approaches to increase the user capacity and improve the error performance of Code Division Multiple Access (CDMA) by employing adaptive interference cancellation and collaborative spreading and space diversity techniques. Collaborative Coding Multiple Access (CCMA) is also investigated as a separate technique and combined with CDMA. The advantages and shortcomings of CDMA and CCMA are analysed and new techniques for both the uplink and downlink are proposed and evaluated. Multiple access interference (MAI) problem in the uplink of CDMA is investigated first. The practical issues of multiuser detection (MUD) techniques are reviewed and a novel blind adaptive approach to interference cancellation (IC) is proposed. It exploits the constant modulus (CM) property of digital signals to blindly suppress interference during the despreading process and obtain amplitude estimation with minimum mean squared error for use in cancellation stages. Two new blind adaptive receiver designs employing successive and parallel interference cancellation architectures using the CM algorithm (CMA) referred to as ‘CMA-SIC’ and ‘BA-PIC’, respectively, are presented. These techniques have shown to offer near single user performance for large number of users. It is shown to increase the user capacity by approximately two fold compared with conventional IC receivers. The spectral efficiency analysis of the techniques based on output signal-to interference-and-noise ratio (SINR) also shows significant gain in data rate. Furthermore, an effective and low complexity blind adaptive subcarrier combining (BASC) technique using a simple gradient descent based algorithm is proposed for Multicarrier-CDMA. It suppresses MAI without any knowledge of channel amplitudes and allows large number of users compared with equal gain and maximum ratio combining techniques normally used in practice. New user collaborative schemes are proposed and analysed theoretically and by simulations in different channel conditions to achieve spatial diversity for uplink of CCMA and CDMA. First, a simple transmitter diversity and its equivalent user collaborative diversity techniques for CCMA are designed and analysed. Next, a new user collaborative scheme with successive interference cancellation for uplink of CDMA referred to as collaborative SIC (C-SIC) is investigated to reduce MAI and achieve improved diversity. To further improve the performance of C-SIC under high system loading conditions, Collaborative Blind Adaptive SIC (C-BASIC) scheme is proposed. It is shown to minimize the residual MAI, leading to improved user capacity and a more robust system. It is known that collaborative diversity schemes incur loss in throughput due to the need of orthogonal time/frequency slots for relaying source’s data. To address this problem, finally a novel near-unity-rate scheme also referred to as bandwidth efficient collaborative diversity (BECD) is proposed and evaluated for CDMA. Under this scheme, pairs of users share a single spreading sequence to exchange and forward their data employing a simple superposition or space-time encoding methods. At the receiver collaborative joint detection is performed to separate each paired users’ data. It is shown that the scheme can achieve full diversity gain at no extra bandwidth as inter-user channel SNR becomes high. A novel approach of ‘User Collaboration’ is introduced to increase the user capacity of CDMA for both the downlink and uplink. First, collaborative group spreading technique for the downlink of overloaded CDMA system is introduced. It allows the sharing of the same single spreading sequence for more than one user belonging to the same group. This technique is referred to as Collaborative Spreading CDMA downlink (CS-CDMA-DL). In this technique T-user collaborative coding is used for each group to form a composite codeword signal of the users and then a single orthogonal sequence is used for the group. At each user’s receiver, decoding of composite codeword is carried out to extract the user’s own information while maintaining a high SINR performance. To improve the bit error performance of CS-CDMA-DL in Rayleigh fading conditions, Collaborative Space-time Spreading (C-STS) technique is proposed by combining the collaborative coding multiple access and space-time coding principles. A new scheme for uplink of CDMA using the ‘User Collaboration’ approach, referred to as CS-CDMA-UL is presented next. When users’ channels are independent (uncorrelated), significantly higher user capacity can be achieved by grouping multiple users to share the same spreading sequence and performing MUD on per group basis followed by a low complexity ML decoding at the receiver. This approach has shown to support much higher number of users than the available sequences while also maintaining the low receiver complexity. For improved performance under highly correlated channel conditions, T-user collaborative coding is also investigated within the CS-CDMA-UL system
    corecore