77 research outputs found

    The BLIXER, a Wideband Balun-LNA-I/Q-Mixer Topology

    Get PDF
    This paper proposes to merge an I/Q current-commutating mixer with a noise-canceling balun-LNA. To realize a high bandwidth, the real part of the impedance of all RF nodes is kept low, and the voltage gain is not created at RF but in baseband where capacitive loading is no problem. Thus a high RF bandwidth is achieved without using inductors for bandwidth extension. By using an I/Q mixer with 25% duty-cycle LO waveform the output IF currents have also 25% duty-cycle, causing 2 times smaller DC-voltage drop after IF filtering. This allows for a 2 times increase in the impedance level of the IF filter, rendering more voltage gain for the same supply headroom. The implemented balun-LNA-I/Q-mixer topology achieves > 18 dB conversion gain, a flat noise figure < 5.5 dB from 500 MHz to 7 GHz, IIP2 = +20 dBm and IIP3 = -3 dBm. The core circuit consumes only 16 mW from a 1.2 V supply voltage and occupies less than 0.01 mm2 in 65 nm CMOS

    A 1.2 V low noise amplifier with double feedback for high gain and low noise figure

    Get PDF
    Dissertação para obtenção do Grau de Mestre em Engenharia Eletrotécnica e de ComputadoresIn this thesis we present a balun low noise amplifier (LNA) in which the gain is boosted using a double feedback structure. The circuit is based in a Balun LNA with noise and distortion cancellation. The LNA is based in two basic stages: common-gate (CG) and common-source (CS). We propose to replace the resistors by active loads, which have two inputs that will be used to provide the feedback (in the CG and CS stages). This proposed methodology will boost the gain and reduce the NF (Noise Figure). Simulation results, with a 130 nm CMOS technology, show that the gain is 19.65 dB and the NF is less than 2.17 dB. The total power dissipation is only 5 mW (since no extra blocks are required), leading to an FOM (Figure of Merit) of 3.13 mW-1 from a nominal 1.2 supply

    A 1.2 V Low-Noise-Amplifier with Double Feedback for High Gain and Low Noise Figure

    Get PDF
    Part 19: Electronics: AmplifiersInternational audienceIn this paper we present a balun low noise amplifier (LNA) in which the gain is boosted using a double feedback structure. The circuit is based in a conventional Balun LNA with noise and distortion cancellation. The LNA is based in two basic stages: common-gate (CG) and common-source (CS). We propose to replace the resistors by active loads, which have two inputs that will be used to provide the feedback (in the CG and CS stages). This proposed methodology will boost the gain and reduce the NF. Simulation results, with a 130 nm CMOS technology, show that the gain is 23.8 dB and the NF is less than 1.8 dB. The total power dissipation is only 5.3(since no extra blocks are required), leading to an FOM of 5.7 mW− 1 from a nominal 1.2 supply

    Passive Mixer-based UWB Receiver with Low Loss, High Linearity and Noise-cancelling for Medical Applications

    Get PDF
    A double balanced passive mixer-based receiver operating in the 3-5 GHz UWB for medical applications is described in this paper. The receiver front-end circuit is composed of an inductorless low noise amplifier (LNA) followed by a fully differential voltage-driven double-balanced passive mixer. A duty cycle of 25% was chosen to eliminate overlap between LO signals, thereby improving receiver linearity. The LNA realizes a gain of 25.3 dB and a noise figure of 2.9 dB. The proposed receiver achieves an IIP3 of 3.14 dBm, an IIP2 of 17.5 dBm and an input return loss (S11) below -12.5dB. Designed in 0.18μm CMOS technology, the proposed mixer consumes 0.72pW from a 1.8V power supply. The designed receiver demonstrated a good ports isolation performance with LO_IF isolation of 60dB and RF_IF isolation of 78dB

    A MOSFET-only wideband LNA exploiting thermal noise canceling and gain optimization

    Get PDF
    Dissertação apresentada na Faculdade de Ciências e Tecnologia da Universidade Nova de Lisboa para a obtenção do grau de Mestre em Engenharia Electrotécnica e de ComputadoresIn this thesis a MOSFET-only implementation of a balun LNA is presended. This LNA is based on the combination of a common-gate and a common-source stage with canceling of the noise of the common-gate stage. In this circuit, resistors are replaced by transistors, to reduce area and cost, and minimize the e ect of process and supply variations and mismatches. In addition we obtain a higher gain for the same voltage drop. Thus, the LNA gain is optimized, and the noise gure(NF) is reduced. We derive equations for the gain, input matching, and NF. The performance of this new topology is compared with that of a conventional LNA with resistors. Simulation results with a 130 nm CMOS technology show that we obtain a balun LNA with a peak 20.2 dB gain (about 2 dB improvement), and a spot NF lower than 2.4 dB. The total power consumption is only 4.8 mW for a bandwidth wide than 5 GHz

    A New Approach to the Design of CMOS Inductorless Common-gate Low-noise Amplifiers

    Get PDF
    This work proposes a new approach to design a simple and effective LNA reaching very competitive results in 1.2V 65-nm standard CMOS technology. The proposed design uses a transconductance enhancement technique to achieve 2.3 dB of noise figure at the 5 GHz band. The paper exposes the advantages of a reduced number of devices in the circuit and analyses the topology. Simulations with complete technology models and statistical analysis are presented for more precise results

    A 300-800MHz Tunable Filter and Linearized LNA applied in a Low-Noise Harmonic-Rejection RF-Sampling Receiver

    Get PDF
    A multiband flexible RF-sampling receiver aimed at software-defined radio is presented. The wideband RF sampling function is enabled by a recently proposed discrete-time mixing downconverter. This work exploits a voltage-sensing LNA preceded by a tunable LC pre-filter with one external coil to demonstrate an RF-sampling receiver with low noise figure (NF) and high harmonic rejection (HR). The second-order LC filter provides voltage pre-gain and attenuates the source noise aliasing, and it also improves the HR ratio of the sampling downconverter. The LNA consists of a simple amplifier topology built from inverters and resistors to improve the third-order nonlinearity via an enhanced voltage mirror technique. The RF-sampling receiver employs 8 times oversampling covering 300 to 800 MHz in two RF sub-bands. The chip is realized in 65 nm CMOS and the measured gain across the band is between 22 and 28 dB, while achieving a NF between 0.8 to 4.3 dB. The IIP2 varies between +38 and +49 dBm and the IIP3 between -14 dBm and -9 dBm, and the third and fifth order HR ratios are more than 60 dB. The LNA and downconverter consumes 6 mW, and the clock generator takes 12 mW at 800 MHz RF.\ud \u

    An Ultra-Wideband Low Noise Amplifier and Spectrum Sensing Technique for Cognitive Radio

    Get PDF
    A low power ultra-wideband, inductorless low noise amplifier (LNA) employing a noise cancellation architecture and designed in a commercially available 40nm 1.2V digital CMOS process is presented. The amplifier targets cognitive radio communication applications which cover the frequency range of 1-10 GHz and achieves an S11 \u3c -9.5 dB from 1.4 - 9.5 GHz. Within this bandwidth the maximum power gain is 13.4 dB, the maximum noise figure is 4.3 dB, and the miminum IIP3 is 0 dBm. The total power consumption of the LNA (neglecting the buffer required to drive the 50 Ω test equipment) is 8 mW. The total area consumed is 0.031mm2 excluding the pads. A spectrum sensing technique using translational loop technique is also proposed to realize simultaneous spectrum sensing and data reception of cognitive radio. This technique also eliminates the need for tunable sharp band-select filter at the front-end

    Design of a low-voltage CMOS RF receiver for energy harvesting sensor node

    Get PDF
    In this thesis a CMOS low-power and low-voltage RF receiver front-end is presented. The main objective is to design this RF receiver so that it can be powered by a piezoelectric energy harvesting power source, included in a Wireless Sensor Node application. For this type of applications the major requirements are: the low-power and low-voltage operation, the reduced area and cost and the simplicity of the architecture. The system key blocks are the LNA and the mixer, which are studied and optimized with greater detail, achieving a good linearity, a wideband operation and a reduced introduction of noise. A wideband balun LNA with noise and distortion cancelling is designed to work at a 0.6 V supply voltage, in conjunction with a double-balanced passive mixer and subsequent TIA block. The passive mixer operates in current mode, allowing a minimal introduction of voltage noise and a good linearity. The receiver analog front-end has a total voltage conversion gain of 31.5 dB, a 0.1 - 4.3 GHz bandwidth, an IIP3 value of -1.35 dBm, and a noise figure lower than 9 dB. The total power consumption is 1.9 mW and the die area is 305x134.5 m2, using a standard 130 nm CMOS technology
    corecore