6 research outputs found

    Why is Quantum Physics Based on Complex Numbers?

    Get PDF
    The modern quantum theory is based on the assumption that quantum states are represented by elements of a complex Hilbert space. It is expected that in future quantum theory the number field will be not postulated but derived from more general principles. We consider the choice of the number field in quantum theory based on a Galois field (GFQT) discussed in our previous publications. Since any Galois field is not algebraically closed, in the general case there is no guarantee that even a Hermitian operator necessarily has eigenvalues. We assume that the symmetry algebra is the Galois field analog of the de Sitter algebra so(1,4) and consider spinless irreducible representations of this algebra. It is shown that the Galois field analog of complex numbers is the minimal extension of the residue field modulo pp for which the representations are fully decomposable.Comment: Latex, 27 pages, no figures, minor correction

    Galois algebras of squeezed quantum phase states

    No full text
    6 pages in relation to ICSSUR'05 conference held in Besançon, May 2-6 (2005).Coding, transmission and recovery of quantum states with high security and efficiency, and with as low fluctuations as possible, is the main goal of quantum information protocols and their proper technical implementations. The paper deals with this topic, focusing on the quantum states related to Galois algebras. We first review the constructions of complete sets of mutually unbiased bases in a Hilbert space of dimension q = pm, with p being a prime and m a positive integer, employing the properties of Galois fields Fq (for p > 2) and/or Galois rings of characteristic four R4m (for p = 2). We then discuss the Gauss sums and their role in describing quantum phase fluctuations. Finally, we examine an intricate connection between the concepts of mutual unbiasedness and maximal entanglement

    Killing Imaginary Numbers? From Today’s Asymmetric Number System to a Symmetric System

    Get PDF
    In this paper, we point out an interesting asymmetry in the rules of fundamental mathematics between positive and negative numbers. Further, we show an alternative numerical system identical to today’s system, but where positive numbers dominate over negative numbers. This is like a mirror symmetry of the existing number system. The asymmetry in both systems leads to imaginary and complex numbers. We also suggest an alternative number system with perfectly symmetrical rules—that is, where there is no dominance of negative numbers over positive numbers or vice versa, and where imaginary and complex numbers are no longer needed. This number system seems to be superior to other numerical systems, as it brings simplicity and logic back to areas that complex rules have dominated for much of the history of mathematics. Finally, we also briefly discuss how the Riemann hypothesis may be linked to the asymmetry in the current number system. The foundation rules of a number system can, in general, not be proven incorrect or correct inside the number system itself. However, the ultimate goal of a number system is, in our view, to describe nature accurately. The optimal number system should therefore be developed with feedback from nature. If nature, at a very fundamental level, is ruled by symmetry, then a symmetric number system should make it easier to understand nature than an asymmetric number system would. We hypothesize that a symmetric number system may thus be better suited to describing nature. Further, such a number system should eliminate imaginary numbers in space-time and quantum mechanics; for example, two areas of physics that are clouded in mystery to this day.publishedVersio

    Completeness of dagger-categories and the complex numbers

    Full text link
    The complex numbers are an important part of quantum theory, but are difficult to motivate from a theoretical perspective. We describe a simple formal framework for theories of physics, and show that if a theory of physics presented in this manner satisfies certain completeness properties, then it necessarily includes the complex numbers as a mathematical ingredient. Central to our approach are the techniques of category theory, and we introduce a new category-theoretical tool, called the dagger-limit, which governs the way in which systems can be combined to form larger systems. These dagger-limits can be used to characterize the dagger-functor on the category of finite-dimensional Hilbert spaces, and so can be used as an equivalent definition of the inner product. One of our main results is that in a nontrivial monoidal dagger-category with all finite dagger-limits and a simple tensor unit, the semiring of scalars embeds into an involutive field of characteristic 0 and orderable fixed field.Comment: 39 pages. Accepted for publication in the Journal of Mathematical Physic
    corecore