754 research outputs found

    Nearly-optimal scheduling of users with Markovian time-varying transmission rates

    Get PDF
    We address the problem of developing a well-performing and implementable scheduler of users with wireless connections to the central controller, which arise in areas such as mobile data networks, heterogeneous networks, or vehicular communications systems. The main feature of such systems is that the connection quality of each user is time-varying, resulting in time-varying transmission rate corresponding to available channel states. We assume that this evolution is Markovian, relaxing the common but unrealistic assumption of stationary channels. We first focus on the three-state channel and study the optimal policy, showing that threshold policies (of giving higher priority to users with higher transmission rate) are not necessarily optimal. For the general channel we design a scheduler which generalizes the recently proposed Potential Improvement (PI) scheduler, and propose its two practical approximations, whose performance is analyzed and compared to existing alternative schedulers in a variety of simulation scenarios. We suggest and give evidence that the variant of PI which only relies on the steady-state distribution of the channel, performs extremely well, and therefore should be used for practical implementation

    A Novel Scheduling Index Rule Proposal for QoE Maximization in Wireless Networks

    Get PDF
    This paper deals with the resource allocation problem aimed at maximizing users’ perception of quality in wireless channels with time-varying capacity. First of all, we model the subjective quality-aware scheduling problem in the framework of Markovian decision processes. Then, given that the obtaining of the optimal solution of this model is unachievable, we propose a simple scheduling index rule with closed-form expression by using a methodology based on Whittle approach. Finally, we analyze the performance of the achieved scheduling proposal in several relevant scenarios, concluding that it outperforms the most popular existing resource allocation strategies

    Learning and Communications Co-Design for Remote Inference Systems: Feature Length Selection and Transmission Scheduling

    Full text link
    In this paper, we consider a remote inference system, where a neural network is used to infer a time-varying target (e.g., robot movement), based on features (e.g., video clips) that are progressively received from a sensing node (e.g., a camera). Each feature is a temporal sequence of sensory data. The learning performance of the system is determined by (i) the timeliness and (ii) the temporal sequence length of the features, where we use Age of Information (AoI) as a metric for timeliness. While a longer feature can typically provide better learning performance, it often requires more channel resources for sending the feature. To minimize the time-averaged inference error, we study a learning and communication co-design problem that jointly optimizes feature length selection and transmission scheduling. When there is a single sensor-predictor pair and a single channel, we develop low-complexity optimal co-designs for both the cases of time-invariant and time-variant feature length. When there are multiple sensor-predictor pairs and multiple channels, the co-design problem becomes a restless multi-arm multi-action bandit problem that is PSPACE-hard. For this setting, we design a low-complexity algorithm to solve the problem. Trace-driven evaluations suggest that the proposed co-designs can significantly reduce the time-averaged inference error of remote inference systems.Comment: 41 pages, 8 figures. The manuscript has been submitted to IEEE Journal on Selected Areas in Information Theor

    Asymptotically Optimal Energy Efficient Offloading Policies in Multi-Access Edge Computing Systems with Task Handover

    Full text link
    We study energy-efficient offloading strategies in a large-scale MEC system with heterogeneous mobile users and network components. The system is considered with enabled user-task handovers that capture the mobility of various mobile users. We focus on a long-run objective and online algorithms that are applicable to realistic systems. The problem is significantly complicated by the large problem size, the heterogeneity of user tasks and network components, and the mobility of the users, for which conventional optimizers cannot reach optimum with a reasonable amount of computational and storage power. We formulate the problem in the vein of the restless multi-armed bandit process that enables the decomposition of high-dimensional state spaces and then achieves near-optimal algorithms applicable to realistically large problems in an online manner. Following the restless bandit technique, we propose two offloading policies by prioritizing the least marginal costs of selecting the corresponding computing and communication resources in the edge and cloud networks. This coincides with selecting the resources with the highest energy efficiency. Both policies are scalable to the offloading problem with a great potential to achieve proved asymptotic optimality - approach optimality as the problem size tends to infinity. With extensive numerical simulations, the proposed policies are demonstrated to clearly outperform baseline policies with respect to power conservation and robust to the tested heavy-tailed lifespan distributions of the offloaded tasks.Comment: 15 pages, 22 figure

    Resource allocation in wireless access network : A queueing theoretic approach

    Get PDF
    To meet its performance targets, the future 5G networks need to greatly optimize the Radio Access Networks (RANs), which connect the end users to the core network. In this thesis, we develop mathematical models to study three aspects of the operation of the RAN in modern wireless systems. The models are analyzed using  the techniques borrowed mainly from queueing theory and stochastic control. Also, simulations are extensively used to gain further insights. First, we provide a detailed Markov model of the random access process in LTE. From this, we observe that the bottleneck in the signaling channel causes congestion in the  access  when a large number of M2M devices attempt to enter the network. Then, in the context of the so-called Heterogeneous networks (HetNets), we suggest  dynamic load balancing schemes that alleviate this congestion and reduce the overall access delay. We then use flow-level models for elastic data traffic to study the problem of coordinating the activities of the neighboring base stations.  We seek to minimize the flow-level delay when there are various classes of users. We classify the users based on their locations, or, in dynamic TDD systems, on the direction of service the network is providing to them. Using interacting queues and different operating policies of running such queues, we study the amount of gain the dynamic policies can provide over the static probabilistic policies. Our results show that simple dynamic policies can  provide very good performance in the cases considered. Finally, we consider the problem of opportunistically scheduling the flows of users with time-varying channels  taking into account   the size of data they need to transfer. Using flow-level models in a system with homogeneous channels, we provide the optimal scheduling policy when there are  no new job arrivals. We also suggest the method to implement such a policy in a time-slotted system. With heterogeneous channels, the problem is intractable for the flow-level techniques. Therefore, we utilize the framework of the restless-multi-armed-bandit (RMAB) problems employing the so-called Whittle index approach. The Whittle index approach, by relaxing the scheduling constraints, makes the problem separable, and thereby provides an exact solution to the modified problem. Our simulations suggest that when  this solution is applied as a heuristic to the original problem, it gives good performance, even with dynamic job arrivals

    Energy harvesting-aware design of wireless networks

    Get PDF
    Recent advances in low-power electronics and energy-harvesting (EH) technologies enable the design of self-sustained devices that collect part, or all, of the needed energy from the environment. Several systems can take advantage of EH, ranging from portable devices to wireless sensor networks (WSNs). While conventional design for battery-powered systems is mainly concerned with the battery lifetime, a key advantage of EH is that it enables potential perpetual operation of the devices, without requiring maintenance for battery substitutions. However, the inherent unpredictability regarding the amount of energy that can be collected from the environment might cause temporary energy shortages, which might prevent the devices to operate regularly. This uncertainty calls for the development of energy management techniques that are tailored to the EH dynamics. While most previous work on EH-capable systems has focused on energy management for single devices, the main contributions of this dissertation is the analysis and design of medium access control (MAC) protocols for WSNs operated by EH-capable devices. In particular, the dissertation first considers random access MAC protocols for single-hop EH networks, in which a fusion center collects data from a set of nodes distributed in its surrounding. MAC protocols commonly used in WSNs, such as time division multiple access (TDMA), framed-ALOHA (FA) and dynamic-FA (DFA) are investigated in the presence of EH-capable devices. A new ALOHA-based MAC protocol tailored to EH-networks, referred to as energy group-DFA (EG-DFA), is then proposed. In EG-DFA nodes with similar energy availability are grouped together and access the channel independently from other groups. It is shown that EG-DFA significantly outperforms the DFA protocol. Centralized scheduling-based MAC protocols for single-hop EH-networks with communication resource constraints are considered next. Two main scenarios are addressed, namely: i) nodes exclusively powered via EH; ii) nodes powered by a hybrid energy storage system, which is composed by a non-rechargeable battery and a capacitor charged via EH. For the former case the goal is the maximization of the network throughput, while in the latter the aim is maximizing the lifetime of the non-rechargeable batteries. For both scenarios optimal scheduling policies are derived by assuming different levels of information available at the fusion center about the energy availability at the nodes. When optimal policies are not derived explicitly, suboptimal policies are proposed and compared with performance upper bounds. Energy management policies for single devices have been investigated as well by focusing on radio frequency identification (RFID) systems, when the latter are operated by enhanced RFID tags with energy harvesting capabilities
    • …
    corecore