3,350 research outputs found

    A constructive mean field analysis of multi population neural networks with random synaptic weights and stochastic inputs

    Get PDF
    We deal with the problem of bridging the gap between two scales in neuronal modeling. At the first (microscopic) scale, neurons are considered individually and their behavior described by stochastic differential equations that govern the time variations of their membrane potentials. They are coupled by synaptic connections acting on their resulting activity, a nonlinear function of their membrane potential. At the second (mesoscopic) scale, interacting populations of neurons are described individually by similar equations. The equations describing the dynamical and the stationary mean field behaviors are considered as functional equations on a set of stochastic processes. Using this new point of view allows us to prove that these equations are well-posed on any finite time interval and to provide a constructive method for effectively computing their unique solution. This method is proved to converge to the unique solution and we characterize its complexity and convergence rate. We also provide partial results for the stationary problem on infinite time intervals. These results shed some new light on such neural mass models as the one of Jansen and Rit \cite{jansen-rit:95}: their dynamics appears as a coarse approximation of the much richer dynamics that emerges from our analysis. Our numerical experiments confirm that the framework we propose and the numerical methods we derive from it provide a new and powerful tool for the exploration of neural behaviors at different scales.Comment: 55 pages, 4 figures, to appear in "Frontiers in Neuroscience

    Correction-to-scaling exponents for two-dimensional self-avoiding walks

    Full text link
    We study the correction-to-scaling exponents for the two-dimensional self-avoiding walk, using a combination of series-extrapolation and Monte Carlo methods. We enumerate all self-avoiding walks up to 59 steps on the square lattice, and up to 40 steps on the triangular lattice, measuring the mean-square end-to-end distance, the mean-square radius of gyration and the mean-square distance of a monomer from the endpoints. The complete endpoint distribution is also calculated for self-avoiding walks up to 32 steps (square) and up to 22 steps (triangular). We also generate self-avoiding walks on the square lattice by Monte Carlo, using the pivot algorithm, obtaining the mean-square radii to ~0.01% accuracy up to N = 4000. We give compelling evidence that the first non-analytic correction term for two-dimensional self-avoiding walks is Delta_1 = 3/2. We compute several moments of the endpoint distribution function, finding good agreement with the field-theoretic predictions. Finally, we study a particular invariant ratio that can be shown, by conformal-field-theory arguments, to vanish asymptotically, and we find the cancellation of the leading analytic correction.Comment: LaTeX 2.09, 56 pages. Version 2 adds a renormalization-group discussion near the end of Section 2.2, and makes many small improvements in the exposition. To be published in the Journal of Statistical Physic

    Multiscale Computations on Neural Networks: From the Individual Neuron Interactions to the Macroscopic-Level Analysis

    Full text link
    We show how the Equation-Free approach for multi-scale computations can be exploited to systematically study the dynamics of neural interactions on a random regular connected graph under a pairwise representation perspective. Using an individual-based microscopic simulator as a black box coarse-grained timestepper and with the aid of simulated annealing we compute the coarse-grained equilibrium bifurcation diagram and analyze the stability of the stationary states sidestepping the necessity of obtaining explicit closures at the macroscopic level. We also exploit the scheme to perform a rare-events analysis by estimating an effective Fokker-Planck describing the evolving probability density function of the corresponding coarse-grained observables

    Dynamical stability analysis of the HD202206 system and constraints to the planetary orbits

    Full text link
    Long-term precise Doppler measurements with the CORALIE spectrograph revealed the presence of two massive companions to the solar-type star HD202206. Although the three-body fit of the system is unstable, it was shown that a 5:1 mean motion resonance exists close to the best fit, where the system is stable. We present here an extensive dynamical study of the HD202206 system aiming at constraining the inclinations of the two known companions, from which we derive possible ranges of value for the companion masses. We study the long term stability of the system in a small neighborhood of the best fit using Laskar's frequency map analysis. We also introduce a numerical method based on frequency analysis to determine the center of libration mode inside a mean motion resonance. We find that acceptable coplanar configurations are limited to inclinations to the line of sight between 30 and 90 degrees. This limits the masses of both companions to roughly twice the minimum. Non coplanar configurations are possible for a wide range of mutual inclinations from 0 to 90 degrees, although ΔΩ=0[π]\Delta\Omega = 0 [\pi] configurations seem to be favored. We also confirm the 5:1 mean motion resonance to be most likely. In the coplanar edge-on case, we provide a very good stable solution in the resonance, whose χ2\chi^2 does not differ significantly from the best fit. Using our method to determine the center of libration, we further refine this solution to obtain an orbit with a very low amplitude of libration, as we expect dissipative effects to have dampened the libration.Comment: 14 pages, 18 figure

    Lognormal Distributions and Geometric Averages of Positive Definite Matrices

    Full text link
    This article gives a formal definition of a lognormal family of probability distributions on the set of symmetric positive definite (PD) matrices, seen as a matrix-variate extension of the univariate lognormal family of distributions. Two forms of this distribution are obtained as the large sample limiting distribution via the central limit theorem of two types of geometric averages of i.i.d. PD matrices: the log-Euclidean average and the canonical geometric average. These averages correspond to two different geometries imposed on the set of PD matrices. The limiting distributions of these averages are used to provide large-sample confidence regions for the corresponding population means. The methods are illustrated on a voxelwise analysis of diffusion tensor imaging data, permitting a comparison between the various average types from the point of view of their sampling variability.Comment: 28 pages, 8 figure

    The 1999 Center for Simulation of Dynamic Response in Materials Annual Technical Report

    Get PDF
    Introduction: This annual report describes research accomplishments for FY 99 of the Center for Simulation of Dynamic Response of Materials. The Center is constructing a virtual shock physics facility in which the full three dimensional response of a variety of target materials can be computed for a wide range of compressive, ten- sional, and shear loadings, including those produced by detonation of energetic materials. The goals are to facilitate computation of a variety of experiments in which strong shock and detonation waves are made to impinge on targets consisting of various combinations of materials, compute the subsequent dy- namic response of the target materials, and validate these computations against experimental data
    corecore