284 research outputs found

    A DETAILED ANALYSIS AND OPTIMIZATION OF THE MODIFIED POLAR DECODING RNTI RECOVERY METHOD TO TRACK USER ACTIVITY IN 5G NETWORKS

    Get PDF
    In this thesis, we analyze and optimize the modified polar decoding and syndrome matching radio network temporary identifier (RNTI) recovery method to de-anonymize the physical downlink control channel (PDCCH) in 5G networks. We present the impact on RNTI recovery of payload length, codeword length, signal-to-noise ratio (SNR) and the Hamming and longest common substring (LCS) recovery methods. Further, we consider the full set of RNTIs and downlink control information (DCI) fields that can be examined for user activity data and propose methods to track user activity within radio networks from the recovered data. Finally, we optimize the RNTI recovery method for different attacker scenarios to demonstrate how an attacker can recover RNTIs, track UEs, and aggregate data about the UE usage patterns and/or metadata about the user.DOD Space, Chantilly, VA 20151Lieutenant Commander, United States NavyApproved for public release. Distribution is unlimited

    Recent Trends in Communication Networks

    Get PDF
    In recent years there has been many developments in communication technology. This has greatly enhanced the computing power of small handheld resource-constrained mobile devices. Different generations of communication technology have evolved. This had led to new research for communication of large volumes of data in different transmission media and the design of different communication protocols. Another direction of research concerns the secure and error-free communication between the sender and receiver despite the risk of the presence of an eavesdropper. For the communication requirement of a huge amount of multimedia streaming data, a lot of research has been carried out in the design of proper overlay networks. The book addresses new research techniques that have evolved to handle these challenges

    Seeing is Believing: A Federated Learning Based Prototype to Detect Wireless Injection Attacks

    Full text link
    Reactive injection attacks are a class of security threats in wireless networks wherein adversaries opportunistically inject spoofing packets in the frequency band of a client thereby forcing the base-station to deploy impersonation-detection methods. Towards circumventing such threats, we implement secret-key based physical-layer signalling methods at the clients which allow the base-stations to deploy machine learning (ML) models on their in-phase and quadrature samples at the baseband for attack detection. Using Adalm Pluto based software defined radios to implement the secret-key based signalling methods, we show that robust ML models can be designed at the base-stations. However, we also point out that, in practice, insufficient availability of training datasets at the base-stations can make these methods ineffective. Thus, we use a federated learning framework in the backhaul network, wherein a group of base-stations that need to protect their clients against reactive injection threats collaborate to refine their ML models by ensuring privacy on their datasets. Using a network of XBee devices to implement the backhaul network, experimental results on our federated learning setup shows significant enhancements in the detection accuracy, thus presenting wireless security as an excellent use-case for federated learning in 6G networks and beyond.Comment: 6 pages with 8 figure

    Reliable & Efficient Data Centric Storage for Data Management in Wireless Sensor Networks

    Get PDF
    Wireless Sensor Networks (WSNs) have become a mature technology aimed at performing environmental monitoring and data collection. Nonetheless, harnessing the power of a WSN presents a number of research challenges. WSN application developers have to deal both with the business logic of the application and with WSN's issues, such as those related to networking (routing), storage, and transport. A middleware can cope with this emerging complexity, and can provide the necessary abstractions for the definition, creation and maintenance of applications. The final goal of most WSN applications is to gather data from the environment, and to transport such data to the user applications, that usually resides outside the WSN. Techniques for data collection can be based on external storage, local storage and in-network storage. External storage sends data to the sink (a centralized data collector that provides data to the users through other networks) as soon as they are collected. This paradigm implies the continuous presence of a sink in the WSN, and data can hardly be pre-processed before sent to the sink. Moreover, these transport mechanisms create an hotspot on the sensors around the sink. Local storage stores data on a set of sensors that depends on the identity of the sensor collecting them, and implies that requests for data must be broadcast to all the sensors, since the sink can hardly know in advance the identity of the sensors that collected the data the sink is interested in. In-network storage and in particular Data Centric Storage (DCS) stores data on a set of sensors that depend on a meta-datum describing the data. DCS is a paradigm that is promising for Data Management in WSNs, since it addresses the problem of scalability (DCS employs unicast communications to manage WSNs), allows in-network data preprocessing and can mitigate hot-spots insurgence. This thesis studies the use of DCS for Data Management in middleware for WSNs. Since WSNs can feature different paradigms for data routing (geographical routing and more traditional tree routing), this thesis introduces two different DCS protocols for these two different kinds of WNSs. Q-NiGHT is based on geographical routing and it can manage the quantity of resources that are assigned to the storage of different meta-data, and implements a load balance for the data storage over the sensors in the WSN. Z-DaSt is built on top of ZigBee networks, and exploits the standard ZigBee mechanisms to harness the power of ZigBee routing protocol and network formation mechanisms. Dependability is another issue that was subject to research work. Most current approaches employ replication as the mean to ensure data availability. A possible enhancement is the use of erasure coding to improve the persistence of data while saving on memory usage on the sensors. Finally, erasure coding was applied also to gossiping algorithms, to realize an efficient data management. The technique is compared to the state-of-the-art to identify the benefits it can provide to data collection algorithms and to data availability techniques

    On Cloud-based multisource Reliable Multicast Transport in Broadband Multimedia Satellite Networks

    Get PDF
    Multimedia synchronization, Software Over the Air, Personal Information Management on Cloud networks require new reliable protocols, which reduce the traffic load in the core and edge network. This work shows via simulations the performance of an efficient multicast file delivery, which advantage of the distributed file storage in Cloud computing. The performance evaluation focuses on the case of a personal satellite equipment with error prone channels

    Dynamic bandwidth allocation in CDMA-based passive optical networks

    Get PDF
    Fiber to the home (FTTH) technology is an attractive solution for providing high bandwidth from the Central Office (CO) to residences and small-and medium-sized businesses. The emergence of Internet Protocol-based communication within households such as VoIP, IPTV, video conferencing, and high definition multimedia shows that there is a need for high-capacity networks that can handle differentiated services. By providing an optical fiber link to a household where the optical network unit (ONU) is located, there will be a tremendous increase in information capacity with respect to Digital Subscriber Line and cable modem technologies that are currently in place. In access networks, Passive Optical Networks (PON) are rapidly replacing copper-based technologies due to a wide range of benefits, one of which is having the capability to transmit data at a higher rate and reach further distances without signal degradation. Under the PON family of technologies, Ethernet PON (EPON) was developed and is specified in the IEEE 802.3 standard outlining the framework that can deliver voice, data, and video over a native Ethernet port to businesses and residential customers. An increasingly important subject to network operators is Quality of Service (QoS). Although the EPON specification provides mechanisms for supporting QoS, it does not specify or define an algorithm for providing QoS. Rather it is up to the CO to design and implement an appropriate algorithm to meet the specifications of services that are offered to their clients. Researchers have extensively studied bandwidth allocation in EPON where the challenge is to develop bandwidth allocation algorithms that can fairly redistribute bandwidth among ONUs based on their demand. These algorithms were developed for the uplink direction, from ONUs to CO, in a network where only a single ONU is permitted to transmit at a time. Another well-established PON technology is Optical Code-Division Multiple Access PON (OCDMA-PON). In recent years, it has become more economical due to hardware advancements and it has gained a lot of attention due to its benefits over EPON. The most attractive benefit of OCDMA-PON is that multiple ONUs may transmit to the CO simultaneously, depending on a number of constraints, whereas EPON is limited to a single ONU transmission at a time. In this thesis, we develop a dynamic bandwidth allocation algorithm called Multi-Class Credit-Based Packet Scheduler (MCBPS) for OCDMA-PON in the uplink direction that supports the Internet Protocol (IP) Differentiated Services and takes advantage of the simultaneous nature of OCDMA. The IP Differentiated Services specifications stipulate the following traffic classifications: Expedited Forwarding for low latency, low packet loss, and low jitter applications; Assured Forwarding for services that require low packet loss; and Best Effort which are not guaranteed any bandwidth commitments. MCBPS incorporates the use of credit pools and the concept of a credit bank system to provide the same services as EPON by assigning ONUs specific timeslots to transmit data and also by specifying the amount of bytes from each class. MCBPS is a central office based algorithm that provides global fairness between Quality of Service (QoS) classes while also ensuring that at any given moment the desired number of simultaneous transmissions is not exceeded. We demonstrate through simulation that MCBPS algorithm is applicable in both EPON and OCDMA-PON environments. An in-house simulation program written in the C programming language is used to evaluate the effectiveness of the proposed algorithm. The MCBPS algorithm was tested alongside a benchmark algorithm called Interleaved Polling with Adaptive Cycle Time (IPACT) algorithm to compare network throughput, average packet delay, maximum packet delay, and packet loss ratio. From the simulation results it was observed that MCBPS algorithm is able to satisfy the QoS requirements and its performance is comparable to IPACT where the simultaneous transmission is limited to one. The simulation results also show that as the number of simultaneous transmissions within the network increases, so does the bandwidth. The MCBPS algorithm is able to re-distribute the scaling bandwidth while ensuring that a single ONU or QoS class does not monopolize all the available bandwidth. In doing so, through simulation results, as the simultaneous transmissions increases, the average packet delay decreases and the packet loss ratio improves

    Space Shuttle/TDRSS communication and tracking systems analysis

    Get PDF
    In order to evaluate the technical and operational problem areas and provide a recommendation, the enhancements to the Tracking and Data Delay Satellite System (TDRSS) and Shuttle must be evaluated through simulation and analysis. These enhancement techniques must first be characterized, then modeled mathematically, and finally updated into LinCsim (analytical simulation package). The LinCsim package can then be used as an evaluation tool. Three areas of potential enhancements were identified: shuttle payload accommodations, TDRSS SSA and KSA services, and shuttle tracking system and navigation sensors. Recommendations for each area were discussed

    Engineering evaluations and studies. Volume 3: Exhibit C

    Get PDF
    High rate multiplexes asymmetry and jitter, data-dependent amplitude variations, and transition density are discussed
    corecore