2,587 research outputs found

    Efficient moving point handling for incremental 3D manifold reconstruction

    Get PDF
    As incremental Structure from Motion algorithms become effective, a good sparse point cloud representing the map of the scene becomes available frame-by-frame. From the 3D Delaunay triangulation of these points, state-of-the-art algorithms build a manifold rough model of the scene. These algorithms integrate incrementally new points to the 3D reconstruction only if their position estimate does not change. Indeed, whenever a point moves in a 3D Delaunay triangulation, for instance because its estimation gets refined, a set of tetrahedra have to be removed and replaced with new ones to maintain the Delaunay property; the management of the manifold reconstruction becomes thus complex and it entails a potentially big overhead. In this paper we investigate different approaches and we propose an efficient policy to deal with moving points in the manifold estimation process. We tested our approach with four sequences of the KITTI dataset and we show the effectiveness of our proposal in comparison with state-of-the-art approaches.Comment: Accepted in International Conference on Image Analysis and Processing (ICIAP 2015

    One machine, one minute, three billion tetrahedra

    Full text link
    This paper presents a new scalable parallelization scheme to generate the 3D Delaunay triangulation of a given set of points. Our first contribution is an efficient serial implementation of the incremental Delaunay insertion algorithm. A simple dedicated data structure, an efficient sorting of the points and the optimization of the insertion algorithm have permitted to accelerate reference implementations by a factor three. Our second contribution is a multi-threaded version of the Delaunay kernel that is able to concurrently insert vertices. Moore curve coordinates are used to partition the point set, avoiding heavy synchronization overheads. Conflicts are managed by modifying the partitions with a simple rescaling of the space-filling curve. The performances of our implementation have been measured on three different processors, an Intel core-i7, an Intel Xeon Phi and an AMD EPYC, on which we have been able to compute 3 billion tetrahedra in 53 seconds. This corresponds to a generation rate of over 55 million tetrahedra per second. We finally show how this very efficient parallel Delaunay triangulation can be integrated in a Delaunay refinement mesh generator which takes as input the triangulated surface boundary of the volume to mesh

    The complete classification of five-dimensional Dirichlet-Voronoi polyhedra of translational lattices

    Get PDF
    In this paper we report on the full classification of Dirichlet-Voronoi polyhedra and Delaunay subdivisions of five-dimensional translational lattices. We obtain a complete list of 110244110244 affine types (L-types) of Delaunay subdivisions and it turns out that they are all combinatorially inequivalent, giving the same number of combinatorial types of Dirichlet-Voronoi polyhedra. Using a refinement of corresponding secondary cones, we obtain 181394181394 contraction types. We report on details of our computer assisted enumeration, which we verified by three independent implementations and a topological mass formula check.Comment: 16 page

    Well-Centered Triangulation

    Get PDF
    Meshes composed of well-centered simplices have nice orthogonal dual meshes (the dual Voronoi diagram). This is useful for certain numerical algorithms that prefer such primal-dual mesh pairs. We prove that well-centered meshes also have optimality properties and relationships to Delaunay and minmax angle triangulations. We present an iterative algorithm that seeks to transform a given triangulation in two or three dimensions into a well-centered one by minimizing a cost function and moving the interior vertices while keeping the mesh connectivity and boundary vertices fixed. The cost function is a direct result of a new characterization of well-centeredness in arbitrary dimensions that we present. Ours is the first optimization-based heuristic for well-centeredness, and the first one that applies in both two and three dimensions. We show the results of applying our algorithm to small and large two-dimensional meshes, some with a complex boundary, and obtain a well-centered tetrahedralization of the cube. We also show numerical evidence that our algorithm preserves gradation and that it improves the maximum and minimum angles of acute triangulations created by the best known previous method.Comment: Content has been added to experimental results section. Significant edits in introduction and in summary of current and previous results. Minor edits elsewher

    Shape Animation with Combined Captured and Simulated Dynamics

    Get PDF
    We present a novel volumetric animation generation framework to create new types of animations from raw 3D surface or point cloud sequence of captured real performances. The framework considers as input time incoherent 3D observations of a moving shape, and is thus particularly suitable for the output of performance capture platforms. In our system, a suitable virtual representation of the actor is built from real captures that allows seamless combination and simulation with virtual external forces and objects, in which the original captured actor can be reshaped, disassembled or reassembled from user-specified virtual physics. Instead of using the dominant surface-based geometric representation of the capture, which is less suitable for volumetric effects, our pipeline exploits Centroidal Voronoi tessellation decompositions as unified volumetric representation of the real captured actor, which we show can be used seamlessly as a building block for all processing stages, from capture and tracking to virtual physic simulation. The representation makes no human specific assumption and can be used to capture and re-simulate the actor with props or other moving scenery elements. We demonstrate the potential of this pipeline for virtual reanimation of a real captured event with various unprecedented volumetric visual effects, such as volumetric distortion, erosion, morphing, gravity pull, or collisions
    corecore