
University of Texas Rio Grande Valley University of Texas Rio Grande Valley 

ScholarWorks @ UTRGV ScholarWorks @ UTRGV 

Mathematical and Statistical Sciences Faculty 
Publications and Presentations College of Sciences 

2016 

The complete classification of five-dimensional Dirichlet–Voronoi The complete classification of five-dimensional Dirichlet–Voronoi 

polyhedra of translational lattices polyhedra of translational lattices 

Mathieu Dutour Sikiric 

Alexey Garber 
The University of Texas Rio Grande Valley 

Achill Schürmann 

Clara Waldmann 

Follow this and additional works at: https://scholarworks.utrgv.edu/mss_fac 

 Part of the Mathematics Commons 

Recommended Citation Recommended Citation 
M, Dutour Sikirić, Garber A, Schürmann A, and Waldmann C. 2016. “The Complete Classification of Five-
Dimensional Dirichlet–Voronoi Polyhedra of Translational Lattices.” Acta Crystallographica Section A 72 
(6): 673–83. https://doi.org/10.1107/S2053273316011682. 

This Article is brought to you for free and open access by the College of Sciences at ScholarWorks @ UTRGV. It has 
been accepted for inclusion in Mathematical and Statistical Sciences Faculty Publications and Presentations by an 
authorized administrator of ScholarWorks @ UTRGV. For more information, please contact justin.white@utrgv.edu, 
william.flores01@utrgv.edu. 

https://scholarworks.utrgv.edu/
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/mss_fac
https://scholarworks.utrgv.edu/cos
https://scholarworks.utrgv.edu/mss_fac?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/174?utm_source=scholarworks.utrgv.edu%2Fmss_fac%2F114&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu
mailto:justin.white@utrgv.edu,%20william.flores01@utrgv.edu


research papers

Acta Cryst. (2016). A72, 673–683 http://dx.doi.org/10.1107/S2053273316011682 673

The complete classification of five-dimensional
Dirichlet–Voronoi polyhedra of translational
lattices

Mathieu Dutour Sikirić,a Alexey Garber,b Achill Schürmannc* and Clara

Waldmannd
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This paper reports on the full classification of Dirichlet–Voronoi polyhedra and

Delaunay subdivisions of five-dimensional translational lattices. A complete list

is obtained of 110 244 affine types (L-types) of Delaunay subdivisions and it

turns out that they are all combinatorially inequivalent, giving the same number

of combinatorial types of Dirichlet–Voronoi polyhedra. Using a refinement of

corresponding secondary cones, 181 394 contraction types are obtained. The

paper gives details of the computer-assisted enumeration, which was verified by

three independent implementations and a topological mass formula check.

1. Introduction

The study of translational lattices and their Dirichlet–Voronoi

polyhedra are classical subjects in crystallography. Fedorov

(1885) (cf. Senechal & Galiulin, 1984) determined the five

combinatorial types of possible Dirichlet–Voronoi polyhedra

in the Euclidean 3-space R3. These are also all the parallelo-

hedra in R
3, that is, polyhedra admitting a facet-to-facet

tiling of R3 by translation. Voronoi (1908, 1909) developed a

theory to classify Dirichlet–Voronoi polyhedra for arbitrary

d-dimensional Euclidean spaces Rd. His theory allows them to

be classified via a classification of Delaunay subdivisions up to

affine equivalence (so-called L-types). In this context Voronoi

also came up with his famous and still unsolved conjecture,

stating that every parallelohedron in Rd is affinely equivalent

to a Dirichlet–Voronoi polyhedron for some translational

lattice.

In this paper we report on the enumeration of the five-

dimensional combinatorial types of Dirichlet–Voronoi poly-

hedra or equivalently Delaunay subdivisions (Theorem 3.5).

We find in total 110 244 different combinatorial types and

hereby go beyond the partial classification according to

subordination schemes previously obtained by Engel (2000).

In Table 3 we list the number of Delaunay subdivisions that

have been computed so far. By our work, a full classification is

known for d � 5 so far. Recent partial results on primitive

types in dimension 6 (Baburin & Engel, 2013) seem to indicate

that a full classification beyond five dimensions is out of reach

at the moment.

Our paper is organized as follows. In x2 we start with some

notation and background on Dirichlet–Voronoi and Delaunay

polytopes. Voronoi’s L-type theory is briefly reviewed in x3. In

particular we describe how the classification of Dirichlet–

Voronoi polyhedra is reduced to the classification of Delaunay
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subdivisions and how this can practically be done. Algorithms

and implementations for our classification result are briefly

described in x4 and references to online sources are given.

Additional data and tables are presented in x5, where we also

relate our work to the theory of contraction types.

2. Dirichlet–Voronoi and Delaunay polytopes

Let � denote a translational lattice in Rd. That is, � is a full

rank-discrete subgroup of Rd and, equivalently, can be written

as

� ¼ f�1b1 þ . . .þ �dbd : �1; . . . ; �d 2 Zg

with linearly independent vectors b1; . . . ; bd 2 R
d. Latter

vectors, as well as a matrix B with these as columns, are

referred to as a basis of � and we simply write � ¼ BZd.

Viewing Rd as a Euclidean space with norm j � j, the Dirichlet–

Voronoi polytope DV(�) of � is defined as the set of points in

R
d which are at least as close to the origin than to any other

element of �:

DVð�Þ ¼ fx 2 Rd : jxj � jx� yj for all y 2 �g:

2.1. General facts about polytopes

The term polytope refers to the fact that DV(�) can be

described as a convex hull (a set of all convex combinations)

of finitely many points. A point that cannot be omitted in such

a description is called a vertex of the polytope. Let us briefly

review some basics from the theory of polytopes [see Ziegler

(1995) and Grünbaum (2003) for details]. A supporting

hyperplane is an affine hyperplane having the property that

the polytope is fully contained in one of the two halfspaces

bounded by it. A k-dimensional face of a polytope is defined as

a k-dimensional intersection of the polytope with a supporting

hyperplane. The ðd� 1Þ-dimensional faces of a d-dimensional

polytope are called facets and vertices are the 0-dimensional

faces. Every polytope also has a description by linear

inequalities and the non-redundant ones in such a description

are in 1-to-1-correspondence to its facets.

Altogether, the faces of a polytope form a poset (partially

ordered set, ordered by inclusion), which is called the face

lattice of the polytope. Two polytopes are called combinato-

rially equivalent if they possess the same face lattice. For

instance, two two-dimensional n-gons (which are the two-

dimensional polytopes with n vertices) are always combina-

torially equivalent. However, they might not be affinely

equivalent, that is, there does not exist an affine map mapping

one to the other [see Bremner et al. (2014) for details on this

and how to compute equivalence].

We note that Engel (2000) uses a so-called subordination

scheme (sometimes called a polyhedral scheme) which is an

invariant to classify Dirichlet–Voronoi polytopes. Two

combinatorially different polytopes can however have the

same subordination scheme. In fact, several combinatorially

different Dirichlet–Voronoi polyhedra in R5 have the same

subordination scheme. Therefore this invariant cannot be used

for a full classification of all combinatorial types.

2.2. Affine and combinatorial types of Dirichlet–Voronoi
polytopes

In dimension 2 there exist only two combinatorially

inequivalent types of Dirichlet–Voronoi polytopes: either

centrally symmetric hexagons or rectangles. We note that

there are infinitely many affine types of Dirichlet–Voronoi

polytopes. Actually, any centrally symmetric hexagon with

vertices on a unit circle is a Dirichlet–Voronoi polytope of a

lattice. However, they are not all affinely equivalent to each

other. For instance, none of them is affinely equivalent to a

regular hexagon (except the regular hexagon itself). For more

information on affine types of Dirichlet–Voronoi polytopes

the interested reader is referred to Dolbilin et al. (2011) and

Gavrilyuk (2014).

The combinatorial types of Dirichlet–Voronoi polytopes in

dimensions 3 and 4 are known as well. There exist five

different combinatorial types of Dirichlet–Voronoi polytopes

in dimension 3 and 52 different combinatorial types in

dimension 4. In this paper we report on the classification in

dimension 5 and we show:

Theorem 2.1. There are precisely 110 244 combinatorially

inequivalent types of Dirichlet–Voronoi polytopes of five-

dimensional translational lattices.

In the following we explain in more detail how to obtain the

above classification result, based on Voronoi’s second reduc-

tion theory for positive definite quadratic forms.

2.3. Delaunay subdivisions

The notion of Delaunay subdivisions was introduced by

Delone (1934). Here we give their definition and briefly

describe major properties.

Given a translational lattice � in R
d, an empty sphere

Sðc; rÞ of centre c and radius r> 0 is a sphere such that there is

no lattice point in its interior. A Delaunay cell is an inter-

section � \ Sðc; rÞ. A Delaunay polytope is a d-dimensional

polytope of the form convð� \ Sðc; rÞÞ.

The set of all Delaunay polytopes of � form a polytopal

subdivision of Rd, called the Delaunay subdivision of �. In

general, a polytopal subdivision is a non-overlapping union of

polytopes that fill all of Rd and such that the intersection of

any two polytopes is either empty or a k-dimensional face.

DVð�Þ together with all its translates by lattice vectors form

another polytopal subdivision of Rd. Both subdivisions are

invariant by lattice translations. The Delaunay polytopes with

vertex at x 2 � are translates by x of some Delaunay polytope

with vertex at 0. Thus to know the full Delaunay subdivision of

a lattice �, it suffices to know the Delaunay polytopes with

vertex 0. The centres of these Delaunay polytopes coincide

with the vertices of DVð�Þ.
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The Delaunay subdivision is said to be dual to the sub-

division with Dirichlet–Voronoi polytopes. The Dirichlet–

Voronoi polytope of a lattice can be obtained from the

Delaunay polytopes with vertex 0 and vice versa: there is a

bijection between the k-dimensional faces of these Delaunay

polytopes and the ðd� kÞ-dimensional faces of the Dirichlet–

Voronoi polytope. In particular, each d-dimensional Delaunay

polytope corresponds to a vertex of the Dirichlet–Voronoi

polytope. Moreover, the face lattice structure with respect to

inclusion is preserved as well: if two faces of Delaunay poly-

topes with vertex 0 are contained in each other, the corre-

sponding dual faces of the Dirichlet–Voronoi polytope are

contained in each other with the inclusion reversed.

Therefore, the classification of combinatorial types of

Dirichlet–Voronoi polytopes is equivalent to the classification

of combinatorial types of Delaunay subdivisions.

The different combinatorial types can be derived from

possible affine types. Here, two Delaunay subdivisions, or

lattices � and �0, are affinely equivalent (are of the same affine

type) if there is a matrix (linear map) A 2 GLdðRÞ with

�0 ¼ A�, mapping all Delaunay polytopes of � to those of

�0. Note that two Delaunay subdivisions with different

combinatorial types cannot be affinely equivalent. The oppo-

site could be possible though: two different affine types of

Delaunay subdivisions could possibly have the same combi-

natorial type – although we do not know of a single example

among Delaunay subdivisions for translational lattices at this

point. In particular, up to dimension 5, all affine types of

Delaunay subdivisions are not only affinely inequivalent, but

also combinatorially inequivalent.

3. Voronoi’s second reduction theory

In the following we give a short sketch of Voronoi’s second

reduction theory (Voronoi, 1908, 1909), as far as it is necessary

to describe how our classification of affine types of five-

dimensional Delaunay subdivisions is obtained. For a more

detailed description and extensions of the theory we refer the

reader to Schürmann (2009).

3.1. Working with Gram matrices

The set of real symmetric positive definite matrices is

denoted Sd
>0. When dealing with lattices up to orthogonal

transformations, it is often convenient to work with Gram

matrices Q ¼ BtB 2 Sd
>0 instead of using matrices of lattice

bases B. Up to orthogonal transformations, the basis matrix B

can be uniquely recovered from Q using the Cholesky

decomposition. Geometrically this is equivalent to recon-

struction of a basis knowing vector lengths and angles between

them. Every positive definite symmetric matrix Q defines a

corresponding positive definite quadratic form x 7!Q½x�

¼ xtQx on Rd.

In particular for studying affine types of Delaunay sub-

divisions it is convenient to use the same coordinates

of vertices v1; . . . ; vn from a fixed translational lattice

� � Rd (often � ¼ Zd) for different affine images

B� convfv1; . . . ; vng of Delaunay polytopes, which we

represent by a corresponding matrix Q 2 Sd
>0. A polytope

P ¼ convfv1; . . . ; vng with vertices vi 2 � is called a Delaunay

polytope of Q if it is d-dimensional and if there exists a centre

c 2 Rd and a real number r such that Q½c� vi� ¼ r2 for

i ¼ 1 . . . ; n and Q½c� v�> r2 for all other v 2 �. The set

Delð�;QÞ of all Delaunay polytopes of Q 2 Sd
>0 is a polytopal

subdivision of Rd, called the Delaunay subdivision of Q with

respect to �.

We speak of a Delaunay triangulation if all the Delaunay

polytopes are simplices, that is, if all of them have affinely

independent vertices. We say that Delð�;QÞ is a refinement of

Delð�;Q0Þ [and Delð�;Q0Þ is a coarsening of Delð�;QÞ], if

every Delaunay polytope of Q is contained in a Delaunay

polytope of Q0. Any Delaunay subdivision can be refined to a

Delaunay triangulation by perturbing Q if necessary.

Voronoi’s theory of secondary cones which we explain below

gives us an explicit description of the set of positive definite

matrices having the same Delaunay subdivision.

3.2. Secondary cones and L-types

Voronoi’s second reduction theory is based on secondary

cones (also called L-type domains):

SCðDÞ ¼ fQ 2 Sd
>0 : DelðZd;QÞ ¼ Dg;

which can be seen to be non-empty polyhedral cones in Sd
>0

(which are open within their linear hull), if D is a Delaunay

subdivision for some Q. In order to give an explicit description

of SCðDÞ we define for an affinely independent set V � Zd of

cardinality dþ 1 and a point w 2 Zd the symmetric matrix

NV;w ¼ wwt
�
P
v2V

�vvvt; ð1Þ

where the coefficients �v are uniquely determined by the

affine dependency:

w ¼
P
v2V

�vv with 1 ¼
P
v2V

�v:

In the special situation of V ¼ fv1; . . . ; vdþ1g being vertices of

a Delaunay simplex L and w being the additional vertex of a

Delaunay simplex L0 ¼ convfv2; . . . ; vdþ1;wg adjacent to L,

we use the notation NL;L0 for NV;w. In the following we use

hA;Bi ¼ TraceðABÞ to denote the standard inner product

defined for two symmetric matrices A;B on Sd. The following

result by Voronoi gives an explicit description of a secondary

cone in terms of linear inequalities.

Theorem 3.1 (Voronoi, 1908, 1909). Let Q be a positive

definite symmetric matrix whose Delaunay subdivision

D ¼ DelðZd;QÞ is a triangulation. Then

SCðDÞ ¼ fQ0 2 Sd : hNL;L0 ;Q0i> 0 for adjacent L;L0 2 Dg:

ð2Þ

This theorem of Voronoi shows that the secondary cone

SCðDÞ of a Delaunay triangulation D is a full-dimensional

research papers
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open polyhedral cone, that is, the intersection of finitely many

open halfspaces. If we use weak inequalities 	 0 in equation

(2) instead of strict inequalities, we obtain a description of the

closed polyhedral cone SCðDÞ. We will use these closed

versions and their facial structure in the sequel. Just as for

polytopes (cf. x2.1), faces can be defined for these closed

polyhedral cones and the set of all faces forms a combinatorial

lattice – the face lattice of the cone. Voronoi discovered that the

faces of SCðDÞ correspond to all the possible coarsenings ofD.

Two full-dimensional secondary cones touch in a facet if and

only if the corresponding Delaunay triangulations can be

transformed into each other by bistellar flips. That is, we first

apply a coarsening of some of the simplices to repartitioning

polytopes (d-dimensional polytopes with dþ 2 vertices) and

then apply a refinement procedure. Since these changes of

Delaunay triangulations are not important for what follows,

we omit a detailed description here and refer the interested

reader to Schürmann (2009).

The rational closure Sd
rat;	0 of Sd

>0 is the set of positive semi-

definite quadratic forms whose kernel is defined by rational

equations. At the core of Voronoi’s theory is the action of the

matrix group GLdðZÞ on the polyhedral tiling by closures of

secondary cones:

Theorem 3.2 (Voronoi’s second reduction theory). The

topological closures SCðDÞ give a polyhedral subdivision

of S
d
rat;	0 on which the group GLdðZÞ acts by

SCðDÞ 7!UtSCðDÞU. Under this group action there are only

finitely many inequivalent secondary cones.

Note that one can subdivide the secondary cones into

smaller cones and obtain a reduction domain for the action of

GLdðZÞ on Sd
>0. This is the reason why Voronoi’s theory of

Delaunay subdivisions and secondary cones is referred to as

Voronoi’s second reduction theory (for positive definite

quadratic forms).

For our classification of affine types, the following obser-

vation is crucial:

Theorem 3.3. Let Q;Q0 2 Sd
>0 be two positive definite

matrices with Cholesky decompositions Q ¼ BtB and

Q0 ¼ ðB0ÞtðB0Þ and corresponding lattices � ¼ BZd and

�0 ¼ B0Zd. Then the Delaunay subdivisions of � and �0 are of

the same affine type if and only if Q and Q0 are in GLdðZÞ-

equivalent secondary cones.

Proof. We are not aware of an explicit reference for this

result, so for clarity we give an argument here. First we note

that by transforming a set � and a Delaunay decomposition

Delð�;QÞ by a linear map A 2 GLdðRÞ we get a new

Delaunay decomposition Delð�0; ðA�1Þ
t
QA�1Þ with vertex set

�0 ¼ A�.

Suppose now that the Delaunay decompositions of �
and �0 are of the same affine type. Then

ADelð�; IddÞ ¼ Delð�0; ðA�1Þ
t
A�1Þ ¼ Delð�0; IddÞ. There-

fore

DelðZd;QÞ ¼ B�1Delð�; IddÞ

¼ B�1A�1Delð�0; IddÞ

¼ UDelðZd;Q0Þ

with U ¼ B�1A�1B0. Since Zd
¼ UZd we have U 2 GLdðZÞ

and therefore Q and ðU�1Þ
t
Q0U�1 are in the same secondary

cone.

On the other hand, if Q and Q0 are in GLdðZÞ-equivalent

secondary cones, then there exists a U 2 GLdðZÞ with

DelðZd;Q0Þ ¼ UDelðZd;QÞ. Thus

ðB0Þ�1Delð�0; IddÞ ¼ UB�1Delð�; IddÞ;

and hence A ¼ B0UB�1 satisfies ADelð�; IddÞ ¼ Delð�0; IddÞ.
&

With the knowledge of how to perform bistellar flips,

Theorems 3.2 and 3.3 easily lead to an algorithm to enumerate

all affine types of Delaunay triangulations in a given dimen-

sion [see Algorithm 3 in Schürmann (2009)]. For it, Schür-

mann and Vallentin developed the program scc (secondary

cone cruiser). The first version from Schürmann & Vallentin

(2005) already allowed one to reproduce the known classifi-

cation of all GLdðZÞ-inequivalent Delaunay triangulations up

to dimension d = 5. We will use their result, i.e. the output of

the program scc.

Beginning with dimension 6 the number of inequivalent

Delaunay triangulations starts to explode. At the moment, we

still do not know how many inequivalent triangulations to

expect in dimension 6. Baburin & Engel (2013) report that

they found 567 613 632 so far.

3.3. Enumeration of all Delaunay subdivisions

Arbitrary Delaunay subdivisions are limiting cases of

Delaunay triangulations. Their secondary cones occur on the

boundaries of full-dimensional secondary cones of Delaunay

triangulations. The following theorem seems to be folklore.

One can find a proof for example in proposition 2.6.1 of

Vallentin (2003).

Theorem 3.4. Let D be a Delaunay triangulation.

(i) A positive definite symmetric matrix Q lies in SCðDÞ if

and only if D is a refinement of DelðQÞ.

(ii) If two positive definite symmetric matrices Q and Q0

both lie in SCðDÞ, then DelðQþQ0Þ is a common refinement

of DelðQÞ and DelðQ0Þ.

We note that this theorem can be extended to positive semi-

definite symmetric matrices in the rational closure Sd
rat;	0 of

S
d
>0. For those among them which are not positive definite,

one can define a polyhedral Delaunay subdivision with
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unbounded polyhedra. For details we refer the reader to ch. 4

of Schürmann (2009).

By Theorem 3.4, the classification of all inequivalent

Delaunay subdivisions is equivalent to the classification of all

inequivalent secondary cones. In order to prove our Theorem

2.1, we show the following equivalent result:

Theorem 3.5. In dimension 5 there are 110 244 affine types

of Delaunay subdivisions. Equivalently, there are that many

secondary cones of positive definite quadratic matrices in S5

up to GL5ðZÞ-equivalence.

3.4. Related works

At this juncture, we should point out that there is a parallel

theory that considers a single Delaunay polytope in a lattice,

irrespective of the other Delaunay polytopes in the tessella-

tion. This theory is expounded by Deza & Laurent (2010) and

recent developments can be found in Dutour Sikirı́c (2016).

The possible Delaunay polytopes of dimension 5 were classi-

fied by Kononenko (2002) in terms of 138 combinatorial types.

The classification in dimension 6 in Dutour (2004) gives 6241

combinatorial types.

In Schürmann (2009, cf. Table 2 on p. 60) it is reported that

Engel (2000) found 179 372 inequivalent five-dimensional

Delaunay subdivisions. This, however, is unfortunately a

misinterpretation of Engel’s result who classifies so-called

contraction types (of parallelohedra). From these contraction

types, he derives 103 769 ‘combinatorial types’. These types

are not the true combinatorial types that are classified here

however, but a coarser notion, which classifies parallelohedra

in dimension 5, or equivalently Delaunay subdivisions, up to

their subordination schemes. The subordination scheme of a

d-dimensional polytope P is a list of numbers containing, for

every k ¼ 2; . . . ; d� 1 and for every n, the number of ðk� 1Þ-

faces of P incident to exactly n of the k-faces of P [see x4 of

Engel (2000) for details]. Thus, the subordination scheme

encodes certain properties of the face lattice of a polytope, but

not the whole face lattice. Two combinatorially different

polytopes can have the same subordination scheme. They may

even be the same for different affine types of Dirichlet–

Voronoi polytopes, having even secondary cones of different

dimension. In fact, during our work we discovered two such

examples for d = 5.

Note that combinatorial types of polytopes can only truly be

distinguished by checking whether or not their face lattices are

different. It has been shown by Kaibel & Schwartz (2003) that

the incidence relations between vertices and facets of two

polytopes are sufficient to distinguish their face lattices.

Practically such differences can be checked using graph

isomorphism software as we describe in the next section.

Invariants like the number of faces of a given dimension or the

subordination scheme used by Engel may be useful in

computations, for instance when limiting the number of

equivalence tests. However, such invariants are not sufficient

for complete enumerations. Engel’s invariant appears to

distinguish the known 52 combinatorial types in dimension 4,

but it does not distinguish types in any dimension greater than

or equal to 5. While it is conceivable that the subordination

scheme could be extended to better distinguish between types,

it should never be used alone without checking for equiva-

lence since there is always the possibility that non-isomorphic

structures have the same invariant.

4. Algorithms and implementations

Before we explain the details of our computations for d = 5, we

start with some general observations, which are valid in all

dimensions and quite useful for practical purposes.

4.1. Using reduced generators and central forms

Each closure of a secondary cone is given by a finite list of

linear inequalities (coming from Voronoi’s regulators, cf.

Theorem 3.1). From it one can obtain a number of generating

rays. In fact, one of these descriptions (by rays or inequalities)

can be obtained from the other by a polyhedral representation

conversion. Since all of the involved inequalities involve

rational numbers only, we may assume that the generators for

rays are given by integral vectors (matrices in Sd), with

coordinates having a greatest common divisor (gcd) of 1. We

refer to these generators as reduced (or normalized) genera-

tors. As we are using Theorem 3.4 for the classification of

Delaunay subdivisions, we only need to consider closures of

secondary cones which are faces of closures of full-

dimensional secondary cones. All such faces are themselves

generated by a subset of the reduced generators of the full-

dimensional cone.

Having reduced generators R1; . . . ;Rk of the closure of a

secondary cone SC, we define a central reduced (or normal-

ized) form of the secondary cone as the sum QðSCÞ ¼
Pk

i¼1 Ri.

It is easy to see that two secondary cones SC and SC0 are

GLdðZÞ-equivalent if and only if Q(SC) and Q(SC0) are

GLdðZÞ-equivalent. Hence, for the classification of secondary

cones up to GLdðZÞ-equivalence we can equally well classify

their central reduced forms up to GLdðZÞ-equivalence.

4.2. Testing equivalence of forms and use of invariants

Testing GLdðZÞ-equivalence of central reduced forms can

be done with the Plesken–Souvignier algorithm (Plesken &

Souvignier, 1997). Their initial implementation is available

(see Plesken & Souvignier, 1995) and is part of computer

algebra software such as MAGMA (MAGMA, 2006) and

GAP (The GAP Group, 2015). The algorithm works by

building a finite set of vectors that is canonically defined by a

given positive definite matrix and spans Zd as a lattice. For a

given norm bound n and a positive definite matrix Q let

SðQ; nÞ ¼ fv 2 Zd
��Q½v� � ng:

Then we take the smallest n such that SðQ; nÞ spans Zd as a

lattice and call the vector set Can(Q).

As testing GLdðZÞ-equivalence of central reduced forms is

computationally quite involved, one needs to reduce the
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number of such tests as much as possible since the final

number of forms is M = 110 244 and so the total number of

isomorphism tests is a priori MðM � 1Þ=2. The basic idea is to

use invariants to reduce the number of tests. Some invariants

come naturally from the form Q(SC) such as its determinant

and size of Can(Q(SC)). Other possible invariants are related

to the secondary cone SC under consideration, for example

the dimension of SC or its number of generating forms

R1; . . . ;Rk. Further invariants are the rank of Rk and so on.

Rather surprisingly, the most efficient invariant tends to be the

determinant of Q(SC).

4.3. Putting it all together for five dimensions

Now, finally, let us put the pieces above together, to describe

the algorithm behind our classification result for d = 5. To

show Theorem 3.5 with computer assistance, we can use

Voronoi’s theory. We start from the secondary cones of the 222

known Delaunay triangulations. These were classified by

Baranovskii & Ryshkov (1973), Ryshkov & Baranovskii

(1978) but the classification was incorrect and a final correct

classification was obtained by Engel & Grishukhin (2002)

which we have independently confirmed (Schürmann &

Vallentin, 2006; Dutour Sikirić & Grishukhin, 2009). These

open polyhedral cones are full-dimensional in S5
>0 and

therefore have dimension 15. Their closure is given by a list of

non-redundant linear inequalities. From this list, we can obtain

the reduced generators of each cone and also a description by

generators and by equations/inequalities for each of their

facets. These facets are themselves closures of 14-dimensional

secondary cones which correspond to Delaunay subdivisions

that are a true coarsening of the considered Delaunay trian-

gulation at hand. Some of them may be GLdðZÞ-equivalent, so

for our classification we have to obtain a list of GLdðZÞ-

inequivalent 14-dimensional secondary cones in S5
>0 from

them, using their central reduced forms. In a next step, we

obtain a list of GLdðZÞ-inequivalent 13-dimensional secondary

cones from our list of 14-dimensional secondary cones in a

similar way. We continue this process until we subsequently

obtain a full list of GLdðZÞ-inequivalent cones of dimensions

15; . . . ; 1. See Table 1 for the number of secondary cones

obtained in each dimension in this way.

4.4. Practical implementations

The computer code of our first implementation in Haskell

of the algorithm described above, together with detailed

documentation (in German), are available at http://www.math.

uni-rostock.de/~waldmann. In particular, data of the full

classification can be obtained at http://www.math.uni-

rostock.de/~waldmann/matrizen_dim5, with a matrix of a

central reduced form for each secondary cone in S5
>0.

Our second implementation used the GAP package poly-

hedral (Dutour Sikirić, 2015) with some external calls to isom

(Plesken & Souvignier, 1995) for equivalence tests and lrs

(Avis, 2015) for polyhedral representation conversions. In our

third implementation, we adapted the program scc. In its latest

version (Garber et al., 2015) we included the program isom to

produce all secondary cones of a given dimension.

In order to avoid the dependency on isom in all three

implementations, we also performed equivalence computa-

tions with nauty (McKay, 2014), applied to test equivalence of

the sets Can(Q(SC)) of vectors, by using the method explained

in x3.4 of Bremner et al. (2014). Overall, the full computation,

its resulting data and in particular the numbers in Table 1 were

all sufficiently well cross-checked. All calculations yield the

same results and due to the different nature of our three

programs we can be certain of the obtained classification,

although the computations are large and quite involved.

We can use the obtained results for a computational proof

of our main Theorem 2.1, by showing that all Dirichlet–

Voronoi polytopes are combinatorially inequivalent. This

implies that all Delaunay subdivisions are combinatorially
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Table 2
Number of GL5ðZÞ-inequivalent secondary cones in S5

>0 by number of
rank-k generating rays.

In line i, the rank-k column, k = 1, 4, 5, contains the number of secondary cones
which have i generating rays of rank k. (There exist no generating rays for k =
2, 3.)

No. generating
rays (of particular rank) Rank-1 Rank-4 Rank-5

0 82 51900 1572
1 410 35316 15421
2 1658 21574 32939
3 5029 1354 26811
4 11301 0 19302
5 18923 100 6841
6 23802 0 3662
7 22411 0 2150
8 15528 0 950
9 7744 0 285
10 2699 0 170
11 548 0 38
12 97 0 76
13 9 0 0
14 2 0 0
15 1 0 9
16 0 0 18

Table 1
Number of GL5ðZÞ-inequivalent secondary cones and contraction cones
in S5

>0 by their dimension.

No. No. secondary cones No. contraction cones

1 7 7
2 37 39
3 146 161
4 535 613
5 1681 2021
6 4366 5543
7 9255 12512
8 15692 22806
9 21132 33085
10 22221 37601
11 18033 32821
12 10886 21292
13 4713 9709
14 1318 2787
15 222 397



inequivalent. This is shown by checking whether their face

lattices are non-isomorphic. Since the face lattice of a polytope

is determined by the incidence graph of vertices and facets, we

can check whether these graphs are non-isomorphic. These

isomorphism checks can be performed using, for instance,

graph isomorphism software such as nauty (McKay, 2014). We

computed ‘canonical forms’ for each of the graphs with nauty

and then used md5sum (a special hash function) for each of

them in order to decide computationally (in a reasonable

amount of time) that they are all different.

5. Tables and data

We provide the following tables, containing additional infor-

mation: Table 1 gives the number of inequivalent secondary

cones by their dimension. Table 2 gives the number of

secondary cones by their number of rank-1, -4 or -5 extreme

rays. Table 3 gives the known numbers of inequivalent

secondary cones (all combinatorial types) and full-

dimensional secondary cones (primitive types), together with

a reference where these results can be found. Table 4 gives the

number of secondary cones according to their dimension and

their number of extreme rays. Table 5 gives the number of

secondary cones that cannot be extended to a higher-

dimensional cone by a pyramid construction with a rank-1

extreme ray. Table 6 gives the frequencies of occurrence of

Bravais groups according to the nomenclature of CARAT

(2008). Table 7 and Table 8 relate our classification to notions

in the theory of contraction types as developed by Engel

(2000). In the following we provide some background infor-

mation (see also Dutour Sikirić et al., 2014).

5.1. Fundamental faces and irreducible cones

For a given secondary cone SC with generating rays

R1; . . . ;Rk we define the fundamental face F(SC) to be the

smallest face of SC that contains all the generators Ri of rank

greater than 1. The face F(SC) may be reduced to zero in

which case SC is generated by rank-1 matrices only. From

Erdahl & Ryshkov (1994) we know that the number of

generators is equal to the dimension of the secondary cone in

this case and that this case is equivalent to the Dirichlet–

Voronoi polytope being a zonotope and to the Delaunay

subdivision being the connected region of a hyperplane

arrangement. Up to GL5ðZÞ-equivalence, we found 81

secondary cones of this kind, corresponding to different

zonotopes in dimension 5.

If F(SC) is non-trivial (non-zero) then the structure of the

secondary cone is more complex. For a secondary cone SC we

have a decomposition of the form
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Table 3
Number of primitive and all combinatorial types of Delaunay subdivi-
sions and the corresponding GLnðZÞ-inequivalent secondary cones.

n Primitive types All combinatorial types

2 1 2
3 1 (Fedorov, 1885) 5 (Fedorov, 1885)
4 3 (Voronoi, 1908, 1909) 52 (Delone, 1929a,b;

Stogrin, 1975)
5 222 (Baranovskii & Ryshkov, 1973;

Ryshkov & Baranovskii, 1978;
Engel & Grishukhin, 2002)

110244

6 	 567 613 632 (Baburin & Engel, 2013)

Table 4
Number of secondary cones according to dimension (at most 15) and number of generators (at most 26).

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 7
2 37
3 144
4 2 517
5 17 1595
6 81 4041
7 1 301 8266
8 1 12 887 13354
9 3 62 2007 16862
10 1 11 2 222 3461 16358
11 1 36 13 557 4443 11989
12 2 89 50 944 4259 6395
13 7 182 122 1103 2945 2346
14 19 305 181 857 1449 526
15 43 403 173 430 456 62
16 1 80 390 102 120 84
17 5 92 274 35 13
18 15 72 122 5
19 30 29 33
20 34 13
21 1 23
22 3 6
23 4
24 6
25 7
26 6



SC ¼ FðSCÞ þ
Ph

i¼1

RþpðviÞ

with pðviÞ ¼ viv
t
i the rank-1 matrix (form) associated to a

vector vi. Our computations show that we have dim SC = dim

F(SC) + h which means that SC is obtained by a sequence of h

pyramid constructions over F(SC). By a pyramid construction

we mean an extension to a higher-dimensional secondary cone

by adding a rank-1 generating ray.

If F(SC) does not contain any positive definite matrices

(and hence lies in the boundary of S5
>0), then in dimension 5

there is only one possibility: F(SC) has only one extreme ray

that corresponds to the D4 root lattice, which we denote

by FD4
. Up to GL5ðZÞ-equivalence, we found 424 different

combinatorial types of secondary cones of the form

FD4
þ
Ph

i¼1 RþpðviÞ. Note that FD4
itself is not a secondary

cone, since it does not contain any positive definite forms. By

our computation, all such cones have their dimension equal to

their number of generators.

The fundamental cones F(SC) may themselves contain

rank-1 forms. For example, there exist two secondary cones of

dimension 3 with four generators each, three of rank 4 and one

of rank 1 (see x5 of Dutour Sikirić et al., 2015). If F(SC)

contains only forms of rank higher than 1 then, according to

the terminology of Engel (2000), it is totally zone contracted. If

a secondary cone satisfies SC = F(SC) then it is called irre-

ducible. Tables 7 and 8 give key information on irreducible

secondary cones we found.

5.2. Contraction types

In Engel (2000) the notion of a contraction type is intro-

duced. This notion is distinct from secondary cones and gives a

further refinement of them. That is, if we have a secondary

cone SC that is irreducible but not totally zone contracted and

has rank-1 forms p1; . . . ; pm, then we can decompose it into a

number of contraction cones (also called contraction domains)

SCi þ
Pm

j¼1Rþpj with SCi a totally zone-contracted secondary

cone. For example, the three-dimensional cone SC with

symbol L2
1L3p1 in Table 8 is a cone over a square (combina-

torially) with vertices corresponding to p1;L1;L3 and L1. We

can decompose it into two isomorphic three-dimensional

cones (over triangles) of the form L1L3 þ Rþp1 and one two-

dimensional cone of the form L3 þ Rþp1.

For other cones the decomposition can be more compli-

cated. Given an irreducible secondary cone SC, let R1 be the

cone of its extreme rays of rank 1. We define S to be the set of

all totally zone-contracted irreducible cones whose rays are

also rays of SC (of rank greater than 1). Then our computation

shows that SC can be decomposed into contraction cones

Sþ R1 with S 2 S.

The decomposition of an irreducible secondary cone SC

into contraction cones induces a decomposition of any

secondary cone obtained by adding rank-1 forms. Overall, we

thus obtain a decomposition into contraction cones that is

finer than the decomposition by secondary cones. For
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Table 5
Number of GL5ðZÞ-inequivalent secondary cones in S5

>0 which are not
extendable to a higher-dimensional secondary cone by adding a rank-1
generating ray.

Dimension 10 11 12 13 14 15

No. secondary cones 1 12 40 142 266 222

Table 6
Frequency of occurrence of Bravais groups.

‘Name’ is the standard name from the GAP package (CARAT, 2008). ‘Order’
is the size of the point group of corresponding lattices. ‘Frequency’ is the
number of secondary cones that are symmetric with respect to the group.

Name Order Frequency

1,1,1,1,1: 1 2 105301
1,1,1,1;1: 2 4 4155
1,1,1;1;1: 6 8 159
2-2;1,1,1: 2 12 137
1,1,1;1,1: 2 4 112
1,1,1;1;1: 4 8 90
1,1,1;1;1: 5 8 39
1,1,1,1;1: 1 4 34
2-1;1,1,1: 2 16 31
2-2;1,1;1: 6 24 31
1,1;1;1;1: 15 16 20
1,1;1,1;1: 3 8 14
1,1;1;1;1: 13 16 12
3;1,1: 3 48 10
1,1;1;1;1: 6 16 8
3;1;1: 8 96 7
1,1,1;1;1: 2 8 6
2-1;1,1;1: 4 32 6
1,1;1,1;1: 6 8 6
1,1;1;1;1: 17 16 5
3;1,1: 2 96 4
3;1,1: 5 96 4
2-1;1,1;1: 6 32 4
1;1;1;1;1: 8 32 4
1,1,1;1,1: 1 4 3
1,1,1;1;1: 1 8 3
2-2;2-2;1: 3 72 3
1,1;1;1;1: 10 16 3
4-3;1: 3 240 2
2-2;1,1;1: 4 24 2
1;1;1;1;1: 5 32 2
2-2;1,1;1: 5 24 2
3;1;1: 12 192 2
1;1;1;1;1: 13 32 2
1,1;1,1;1: 1 8 1
1,1;1;1;1: 1 16 1
1;1;1;1;1: 1 32 1
3;1;1: 2 192 1
4-1;1: 2 768 1
4-1;1: 3 2304 1
5-1: 3 3840 1
5-2: 3 1440 1
3;1;1: 4 192 1
4-1;1: 4 768 1
2-2;2-2;1: 5 72 1
2-1;1;1;1: 6 64 1
2-1;1;1;1: 7 64 1
2-2;1;1;1: 7 48 1
3;1;1: 7 192 1
2-1;1;1;1: 8 64 1
2-1;1;1;1: 11 64 1
1;1;1;1;1: 12 32 1
2-1;1;1;1: 12 64 1
1;1;1;1;1: 15 32 1
1;1;1;1;1: 16 32 1



secondary cones SC whose fundamental face F(SC) is totally

zone contracted there is no difference. But for other irre-

ducible secondary cones the contraction types form a strictly

finer decomposition. The total number of contraction types

that we obtain is 181 394. The number of contraction cones by

their dimension is given in Table 1. In Table 8 we give for each

irreducible secondary cone D the number of types of

contraction cones contained in Dþ
P

k RþpðvkÞ. We note that

in Engel (2000) the number of contraction cones is reported

to be 179 372. This discrepancy is most likely due to the

different notion of equivalence via ‘subordination schemes’

used there.

5.3. Euler Poincaré characteristic check

Another key check of the correctness of our enumeration is

to use the Euler Poincaré characteristic. We have the formula

X

F

ð�1ÞdimðFÞ 1

jStabðFÞj
¼ 0

where the sum is over the representatives of cones with

respect to the action of GLnðZÞ. This kind of formula comes

from the Euler Poincaré characteristic of discrete groups, i.e.

�ðGLnðZÞÞ ¼ 0 for n 	 3. See Brown (1994) and Dutour

Sikirić et al. (2016) for more details.

Both our enumeration of secondary cones and our

enumeration of contraction cones satisfy this condition, which

is yet another strong indication of the correctness of our

enumeration. For example, for the secondary cones, if we

regroup the cones by their dimension, this gives us the

following non-trivial identity:
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Table 7
Information about the 82 totally zone-contracted secondary cones.

‘Dimension’ is the dimension of the secondary cone SC, ‘generator’ gives the
type of extreme rays, ‘symbol’ gives the number of facets and vertices of the
corresponding Dirichlet–Voronoi polytopes and ‘No. SC’ gives the number of
secondary cones having SC as their fundamental face.

Dimension Generator Symbol No. SC

1 L1 40,42 450

1 L2 42,96 777

1 L3 48,180 670

1 L4 50,192 112

1 L5 50,282 352

1 L6 54,342 324

1 L7 54,366 220

2 D2
4 42,132 1067

2 L1D4 40,122 1814

2 L2D4 42,132 1825

2 L3D4 48,246 1428

2 L5D4 50,312 352

2 L7D4 54,402 484

2 L1L2 48,202 2385

2 L1L3 48,188 1058

2 L1L4 50,232 333

2 L1L5 50,298 650

2 L1L6 54,366 758

2 L2L3 52,308 1638

2 L2L5 54,376 650

2 L2L6 54,376 324

2 L3L4 50,280 318

2 L3L5 50,304 553

2 L3L6 54,386 582

2 L3L7 54,374 490

2 L4L5 50,330 348

2 L4L6 54,364 318

2 L5L6 54,388 553

3 L1D2
4 48,242 2738

3 L2D2
4 42,168 2047

3 L3D2
4 52,344 1344

3 L7D2
4 56,462 484

3 L1L2D4 48,242 5029

3 L1L3D4 48,254 2436

3 L1L5D4 50,328 650

3 L2L3D4 52,346 2344

3 L2L5D4 54,402 650

3 L3L5D4 50,334 553

3 L3L7D4 54,410 1160

3 L1L2L3 52,316 2773

3 L1L2L5 54,392 1256

3 L1L2L6 54,400 758

3 L1L2
3L7 54,382 456

3 L1L3L4 50,288 516

3 L1L3L5 50,312 696

3 L1L3L6 54,394 856

3 L1L4L5 50,346 630

3 L1L4L6 54,388 734

3 L1L5L6 54,404 928

3 L2L3L5 54,398 1092

3 L2L3L6 54,420 582

3 L2L5L6 54,422 553

3 L3L4L5 50,352 553

3 L3L4L6 54,408 531

3 L3L5L6 54,410 628

3 L4L5L6 54,410 553

4 L2
2D3

4 42,204 665

4 L1L2D2
4 48,282 3988

4 L1L3D2
4 52,352 2272

4 L2L3D2
4 52,384 1074

4 L3L7D2
4 56,470 1160

Table 7 (continued)

Dimension Generator Symbol No. SC

4 L1L2L3D4 52,354 4100

4 L1L2L5D4 54,418 1256

4 L1L2
3L7D4 54,418 1088

4 L1L3L5D4 50,342 696

4 L2L3L5D4 54,424 1092

4 L1L2L3L5 54,406 1392

4 L1L2L3L6 54,428 856

4 L1L2L5L6 54,438 928

4 L1L3L4L5 50,360 696

4 L1L3L4L6 54,416 786

4 L1L3L5L6 54,418 800

4 L1L4L5L6 54,426 928

4 L2L3L5L6 54,444 628

4 L3L4L5L6 54,432 628

5 L5
2D5

4 42,240 100

5 L1L2
2D3

4 48,322 689

5 L1L2L3D2
4 52,392 1815

5 L1L2
3L7D2

4 56,478 1088

5 L1L2L3L5D4 54,432 1392

5 L1L2L3L5L6 54,452 800

5 L1L3L4L5L6 54,440 800
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Table 8
Information about the 125 inequivalent irreducible secondary cones,
which are not totally zone contracted.

Same labelling convention as in Table 7; in addition p1 denotes an extreme ray
of rank 1 and ‘No. contraction cones’ is the number of contraction cones
corresponding to this irreducible component.

Dimension Generator Symbol No. SC
No. contraction
cones

3 L2
1L3p1 48,196 566 2047

4 L1L3L5p2
1 50,320 205 3988

4 L2
1L3D4p1 48,262 1240 1074

4 L3
1L3

3L7p1 54,390 174 665

4 L2
1L2L3p1 52,324 1423 1092

4 L2
1L3L4p1 50,296 274 1256

4 L2
1L3L5p1 50,320 205 615

4 L2
1L3L6p1 54,402 358 4100

4 L1L2
3L5p1 50,326 182 3503

4 L3L2
5L6p1 54,434 203 3999

5 L1L5L6p3
1 54,412 97 615

5 L1L3L5D4p2
1 50,350 205 1188

5 L2
1L2

3L5p2
1 50,334 298 5895

5 L1L2L3L5p2
1 54,414 396 492

5 L1L3L4L5p2
1 50,368 197 492

5 L1L3L5L6p2
1 54,426 164 689

5 L1L3L5L6p2
1 54,432 164 1815

5 L2
1L3D2

4p1 52,360 1168 3279

5 L3
1L3

3L7D4p1 54,426 396 100

5 L2
1L2L3D4p1 52,362 2060 1392

5 L2
1L3L5D4p1 50,350 205 553

5 L1L2
3L5D4p1 50,356 182 1092

5 L2
1L2L3L5p1 54,414 396 958

5 L2
1L2L3L6p1 54,436 358 480

5 L2
1L3L4L5p1 50,368 205 1490

5 L2
1L3L4L6p1 54,424 327 990

5 L2
1L3L5L6p1 54,426 228 291

5 L1L2L2
3L5p1 54,420 352 546

5 L1L2
3L4L5p1 50,374 182 800

5 L1L2
3L5L6p1 54,432 128 628

5 L1L3L2
5L6p1 54,442 178 328

5 L2L3L2
5L6p1 54,468 203 474

5 L3L4L2
5L6p1 54,456 203 591

6 L2
3L6p4

1 54,430 34 92

6 L3
1L3

3L5p3
1 50,348 73 1188

6 L2
1L3L5L6p3

1 54,440 164 492

6 L1L2L5L6p3
1 54,446 97 492

6 L1L3L2
5L6p3

1 54,450 121 2619

6 L1L4L5L6p3
1 54,434 93 1092

6 L2
1L2

3L5D4p2
1 50,364 298 958

6 L1L2L3L5D4p2
1 54,440 396 1490

6 L2
1L2L2

3L5p2
1 54,428 606 3030

6 L2
1L2

3L4L5p2
1 50,382 298 639

6 L2
1L2

3L5L6p2
1 54,440 200 291

6 L2
1L3L2

5L6p2
1 54,450 34 820

6 L1L2L3L5L6p2
1 54,460 164 605

6 L1L2L3L5L6p2
1 54,466 164 628

6 L1L2
3L2

5L6p2
1 54,456 148 328

6 L1L3L4L5L6p2
1 54,448 164 1000

6 L1L3L4L5L6p2
1 54,454 150 474

6 L3
1L3

3L7D2
4p1 56,486 396 740

6 L2
1L2L3D2

4p1 52,400 933 207

6 L2
1L2L3L5D4p1 54,440 396 492

6 L1L2L2
3L5D4p1 54,446 352 450

6 L2
1L2L3L5L6p1 54,460 228 2420

6 L2
1L3L4L5L6p1 54,448 228 279

6 L1L2L2
3L5L6p1 54,466 128 1490

6 L1L2L3L2
5L6p1 54,476 178 628

6 L1L2
3L4L5L6p1 54,454 128 328

6 L1L3L4L2
5L6p1 54,464 178 474

Table 8 (continued)

Dimension Generator Symbol No. SC
No. contraction
cones

7 L1L2
3L5L6p4

1 54,454 64 92

7 L2L2
3L6p4

1 54,464 34 320

7 L2
3L4L6p4

1 54,452 27 72

7 L3L4L2
6p4

1 58,536 27 72

7 L3
1L3

3L5D4p3
1 50,378 73 3030

7 L3
1L2L3

3L5p3
1 54,442 134 639

7 L3
1L3

3L4L5p3
1 50,396 73 1274

7 L3
1L3

3L5L6p3
1 54,454 33 820

7 L2
1L2L3L5L6p3

1 54,474 164 605

7 L2
1L2

3L2
5L6p3

1 54,464 74 1000

7 L2
1L2

3L2
5L6p3

1 54,464 148 740

7 L2
1L3L4L5L6p3

1 54,462 150 207

7 L1L2L3L2
5L6p3

1 54,484 121 814

7 L1L3
3L3

5L6p3
1 54,480 22 261

7 L1L3L4L2
5L6p3

1 54,472 121 1036

7 L2
1L2L2

3L5D4p2
1 54,454 606 153

7 L2
1L2L2

3L5L6p2
1 54,474 200 750

7 L2
1L2L3L2

5L6p2
1 54,484 34 605

7 L2
1L2

3L4L5L6p2
1 54,462 200 1000

7 L2
1L3L4L2

5L6p2
1 54,472 34 740

7 L1L2L2
3L2

5L6p2
1 54,490 148 207

7 L1L2
3L4L2

5L6p2
1 54,478 148 639

8 L2
1L2

3L2
5L6p5

1 54,478 34 320

8 L3
1L3

3L2
5L6p4

1 54,478 47 1274

8 L2
1L3

3L3
5L6p4

1 54,488 38 337

8 L2
1L3

3L2
5L6p4

1 54,478 43 814

8 L1L2L2
3L5L6p4

1 54,488 64 487

8 L1L2
3L4L5L6p4

1 54,476 57 285

8 L1L3L4L2
6p4

1 58,544 28 77

8 L3
1L2L3

3L5D4p3
1 54,468 134 261

8 L3
1L2L3

3L5L6p3
1 54,488 33 1036

8 L3
1L3

3L4L5L6p3
1 54,476 33 753

8 L2
1L2L2

3L2
5L6p3

1 54,498 74 153

8 L2
1L2L2

3L2
5L6p3

1 54,498 148 575

8 L2
1L2

3L4L2
5L6p3

1 54,486 74 814

8 L2
1L2

3L4L2
5L6p3

1 54,486 148 261

8 L1L2L3
3L3

5L6p3
1 54,514 22 1036

8 L1L3
3L4L3

5L6p3
1 54,502 22 153

9 L1L4L5L6p6
1 54,502 16 337

9 L3
1L4

3L3
5L6p5

1 54,502 38 487

9 L2
1L2L2

3L2
5L6p5

1 54,512 34 48

9 L2
1L2

3L4L2
5L6p5

1 54,500 30 753

9 L2
1L3L4L2

6p5
1 58,552 11 575

9 L3
1L2L3

3L2
5L6p4

1 54,512 47 905

9 L3
1L3

3L4L2
5L6p4

1 54,500 47 300

9 L2
1L2L3

3L3
5L6p4

1 54,522 38 68

9 L2
1L2L3

3L2
5L6p4

1 54,512 43 487

9 L2
1L3

3L4L3
5L6p4

1 54,510 38 753

9 L2
1L3

3L4L2
5L6p4

1 54,500 43 575

10 L3L4L6p8
1 54,452 6 18

10 L4
1L6

3L4
5L6p6

1 54,526 9 70

10 L1L3L4L5L2
6p6

1 58,582 14 905

10 L3
1L2L4

3L3
5L6p5

1 54,536 38 186

10 L3
1L4

3L4L3
5L6p5

1 54,524 38 905

11 L4L2
5p9

1 50,468 3 30

11 L1L3L4L5L6p8
1 54,524 8 40

11 L2
3L4L2

6p8
1 58,580 6 110

11 L2
1L3L4L5L2

6p7
1 58,590 10 7

11 L4
1L2L6

3L4
5L6p6

1 54,560 9 186

11 L4
1L6

3L4L4
5L6p6

1 54,548 9 186

12 L1L4L2
5L6p9

1 54,548 4 49

12 L1L2
3L4L5L2

6p8
1 58,604 7 20

13 L2
1L2

3L4L2
5L2

6p9
1 58,628 4 55

13 L2
1L3L4L2

5L2
6p9

1 58,628 3 27

15 L3
3L4L3

6p12
1 62,708 1 4



�
293

5760
þ
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�

939
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þ

56927

576
�

5146751

11520
þ

8329297

5760

�
3341911

960
þ

1630783

256
�

10308319

1152
þ

13879537

1440

�
1414553

180
þ

1356727

288
�

565595

288
þ

48907

96
�

8923

144
¼ 0:

This kind of mass formula provides a highly non-trivial check

of the correctness of an enumeration as any error on a single

entry or on a single stabilizer would make the formula

wrong.
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Bremner, D., Dutour Sikirić, M., Pasechnik, D. V., Rehn, T. &
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& Yasaki, D. (2016). J. Pure Appl. Algebra, 220, 2564–2589.
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Schürmann, A. & Vallentin, F. (2005). scc (secondary cone cruiser).
Version 1.0. http://www.math.uni-magdeburg.de/lattice_geometry/.
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