4,194 research outputs found

    Sustainable Software Ecosystems: Software Engineers, Domain Scientists, and Engineers Collaborating for Science

    Full text link
    The development of scientific software is often a partnership between domain scientists and scientific software engineers. It is especially important to embrace these collaborations when developing advanced scientific software, where sustainability, reproducibility, and extensibility are important. In the ideal case, as discussed in this manuscript, this brings together teams composed of the world's foremost scientific experts in a given field with seasoned software developers experienced in forming highly collaborative teams working on software to further scientific research.Comment: 4 pages, submission for WSSSPE

    Numerical study of an exhaust heat recovery system using corrugated tubes and twisted tape inserts

    Get PDF
    Thesis (M.S.) University of Alaska Fairbanks, 2014Diesel engine generators are the major power source for small communities in cold regions. Diesel generators waste about 1/3 of their fuel energy in the form of heat through exhaust gas. The primary goal of this work is to capture part of the heat from the exhaust and improve the efficiency of the system. A gas to liquid heat transfer performance of a concentric tube heat exchanger with corrugated tubes and twisted tape inserts is investigated by considering its effects on engine performance and economics. This type of heat exchanger is expected to be inexpensive to install and effective in heat transfer, with minimal effect on exhaust emissions of diesel engines. Most previous research has investigated liquid to liquid heat transfer in corrugated tubes at low Reynolds, not gas to liquid heat transfer. The SolidWorks Flow Simulation computer program was used to perform these studies. The program is first validated by comparing simulation results with renowned correlations and field measurements. Simulations are then conducted for a concentric tube heat exchanger with corrugated tubes and twisted tapes of different configurations to determine the optimal design. The maximum enhancement in the rate of heat transfer was found in an annularly corrugated tube heat exchanger with twisted tape inserts. This exchanger transfers about 235.3% and 67.26 % more heat compared to plain tube and annularly corrugated tube heat exchangers without twisted tapes, respectively. Based on optimal results, for a 120 kWe diesel generator, the application of an annularly corrugated tube heat exchanger with twisted tape inserts can save 2,250 gallons of fuel annually (a cost of approximately $11,330) expected payback of initial cost in one month. In addition, saving heating fuel also reduces COâ‚‚ emissions by 23 metric tons per year

    Design and developement of energy efficient miniature devices for energy harvesting, thermal management and biomedical applications

    Get PDF
    This thesis aims to make contributions to the literature in the field of energy efficient miniature devices for energy harvesting, thermal management and biomedical applications. In the first part, experimental results related to energy harvesting capability of a miniature power reclamation device based on external liquid flows are represented. The device’s reclamation principle depends on the conversion of mechanical energy into electrical energy. The mechanical energy in the device was generated by capturing vibrations caused by external liquid flows via the device’s tails, which were designed by taking inspiration from the body shape of the black ghost knife fish, apteronotus albifrons. The reclaimed power was obtained through magnetic polarization, which was generated by rotating circular waterproof magnet structures as a result of rotating movements of the mentioned tails and is transferred to 3.76 V (Ni-Mg) batteries. Power reclamation was also simulated using COMSOL 4.2 software in order to compare the maximum reclaimable theoretical energy harvesting capacity to the experimental results. Experimental tests were performed within a range of flow velocities (1.0 m/s ~ 5.0 m/s) for various fluid densities (plain water, low-salt and highsalt water) in order to obtain extensive experimental data related to the device in response to external fluid flows. According to experimental results, the device could generate powers up to 17.2W. On the other hand, the maximum reclaimable power was obtained as 25.7W from COMSOL Multiphysics 4.2 simulations. Promising energy harvesting results imply that the output from this device could be used as a power source in many applications such as in lighting and GPS (Global positioning system) devices. In the second part of the thesis, a miniature system was used for flow boiling in mini/microtubes. Flow boiling was investigated with surface enhancements provided by crosslinked polyhydroxyethylmethacrylate (pHEMA) coatings, which were used as a crosslinker coating type with different thicknesses (~50 nm, 100 nm and 150 nm) on inner microtube walls. Flow boiling heat transfer experiments were conducted on microtubes (with inner diameters of 249 μm, 507 μm and 908 μm) coated with crosslinked pHEMA coatings. pHEMA nanofilms were deposited with the initiated chemical vapor deposition (iCVD) technique. De-ionized water was utilized as the working fluid. Experimental results obtained from coated microtubes were compared to their plain surface counterparts at two different mass fluxes (5,000 kg/m2s and 20,000 kg/m2s), and significant enhancements in Critical Heat Flux (up to 29.7 %) and boiling heat transfer (up to 126.2 %) were attained. The enhancement of boiling heat transfer was attributed to the increase in nucleation site density and incidence of bubbles departing from surface due to porous structure of crosslinked pHEMA coatings. The underlying mechanism was explained with suction-evaporation mode. Moreover, thicker pHEMA coatings resulted in larger enhancements in both CHF and boiling heat transfer. In the third part, a platform for gene delivery via magnetic actuation of nanoparticles was developed. The importance of high transfection efficiency has been emphasized in many studies investigating methods to improve gene delivery. Accordingly, non-viral transfection agents are widely used as transfection vectors to condense oligonucleotides, DNA, RNA, siRNA, deliver into the cell, and release the cargo. Polyethyleneimine (PEI) is one of the most popular non-viral transfection agents. However, the challenge between high transfection efficiency and toxicity of the polymers is not totally resolved. The delivery of necessary drugs and genes for patients and their transport under safe conditions require carefully designed and controlled delivery systems and constitute a critical stage of patients’ treatment. Compact systems are considered as the strongest candidate for the preparation and delivery of drugs and genes under leak free and safe conditions because of their low energy consumption, low waste disposal, parallel and fast processing capabilities, removal of human factor, high mixing capabilities, enhanced safety, and low amount of reagents. Motivated by this need in the literature, The use of PEI-SPION (Super paramagnetic iron oxide nanoparticles) as transfection agents in in-vitro studies was investigated with the effect of varying magnetic fields provided by a special magnetic system design, which was used as a miniature magnetic actuator device offering different magnet's turn speeds in the system. Experimental results obtained from experimental magnetic actuator systems were compared to the experiments without magnetic actuation, and it was observed that significant enhancements in transfection efficiency (up to 25-30 %) in MCF-7 and PC-3 cells were attained

    Integrated geometry and grid generation system for complex configurations

    Get PDF
    A grid generation system was developed that enables grid generation for complex configurations. The system called ICEM/CFD is described and its role in computational fluid dynamics (CFD) applications is presented. The capabilities of the system include full computer aided design (CAD), grid generation on the actual CAD geometry definition using robust surface projection algorithms, interfacing easily with known CAD packages through common file formats for geometry transfer, grid quality evaluation of the volume grid, coupling boundary condition set-up for block faces with grid topology generation, multi-block grid generation with or without point continuity and block to block interface requirement, and generating grid files directly compatible with known flow solvers. The interactive and integrated approach to the problem of computational grid generation not only substantially reduces manpower time but also increases the flexibility of later grid modifications and enhancements which is required in an environment where CFD is integrated into a product design cycle

    Wide-Area Control Schemes to Improve Small Signal Stability in Power Systems

    Get PDF
    One of the main concerns for the secure and reliable operation of power systems is the small signal stability problem. In the complex and highly interconnected structure of future power systems, relying solely on operator responses and conventional controls cannot assure reliability. Therefore, there is a need for advanced Wide-Area Control Schemes (WACS) that can automatically respond to degradation of reliability in the system. The main objective of this dissertation is to address two key challenges regarding the design and implementation of wide-area control schemes for damping inter-area oscillations. First is the high communication cost associated with optimal centralized control approaches. As power networks are large-scale systems, both the synthesis and the implementation of centralized controllers suggested by most of the previous studies are often impossible in practice. Second is the difficulty of obtaining accurate system-wide dynamic models for initiating and updating the control design. In this research, we introduced wide-area damping control strategies that not only ensure the small signal stability with the desired performance but also consider communication and model information limitations in the design. A state feedback formulation is proposed that aims to simultaneously optimize a standard Linear Quadratic Regulator (LQR) cost criterion and induce a pre-defined communication structure. We solved the proposed problem with three different objectives to target a specific wide-area damping control design challenge in each setting. First, the communication structure is enforced as a constraint in the optimization and solved for a large idealized power network with information symmetry. Second, to make the method suitable for systems with arbitrary structures and information patterns, we proposed a group-sparse regularization to be added to the optimization cost function. Applications of the method for inducing the desired communication network and finding effective measurement and control signal combinations were also investigated. Third, we paired the proposed optimal control with a real-time model identification approach, to create a wide-area control framework that is capable of dealing with model information limitations and inaccuracies in online implementation. The performances of the proposed wide-area damping control architectures are validated through nonlinear simulations on different test systems
    • …
    corecore