21 research outputs found

    On The Communication Complexity of Linear Algebraic Problems in the Message Passing Model

    Full text link
    We study the communication complexity of linear algebraic problems over finite fields in the multi-player message passing model, proving a number of tight lower bounds. Specifically, for a matrix which is distributed among a number of players, we consider the problem of determining its rank, of computing entries in its inverse, and of solving linear equations. We also consider related problems such as computing the generalized inner product of vectors held on different servers. We give a general framework for reducing these multi-player problems to their two-player counterparts, showing that the randomized ss-player communication complexity of these problems is at least ss times the randomized two-player communication complexity. Provided the problem has a certain amount of algebraic symmetry, which we formally define, we can show the hardest input distribution is a symmetric distribution, and therefore apply a recent multi-player lower bound technique of Phillips et al. Further, we give new two-player lower bounds for a number of these problems. In particular, our optimal lower bound for the two-player version of the matrix rank problem resolves an open question of Sun and Wang. A common feature of our lower bounds is that they apply even to the special "threshold promise" versions of these problems, wherein the underlying quantity, e.g., rank, is promised to be one of just two values, one on each side of some critical threshold. These kinds of promise problems are commonplace in the literature on data streaming as sources of hardness for reductions giving space lower bounds

    Tribes Is Hard in the Message Passing Model

    Get PDF
    We consider the point-to-point message passing model of communication in which there are kk processors with individual private inputs, each nn-bit long. Each processor is located at the node of an underlying undirected graph and has access to private random coins. An edge of the graph is a private channel of communication between its endpoints. The processors have to compute a given function of all their inputs by communicating along these channels. While this model has been widely used in distributed computing, strong lower bounds on the amount of communication needed to compute simple functions have just begun to appear. In this work, we prove a tight lower bound of Ω(kn)\Omega(kn) on the communication needed for computing the Tribes function, when the underlying graph is a star of k+1k+1 nodes that has kk leaves with inputs and a center with no input. Lower bound on this topology easily implies comparable bounds for others. Our lower bounds are obtained by building upon the recent information theoretic techniques of Braverman et.al (FOCS'13) and combining it with the earlier work of Jayram, Kumar and Sivakumar (STOC'03). This approach yields information complexity bounds that is of independent interest

    On the Distributed Complexity of Large-Scale Graph Computations

    Full text link
    Motivated by the increasing need to understand the distributed algorithmic foundations of large-scale graph computations, we study some fundamental graph problems in a message-passing model for distributed computing where k2k \geq 2 machines jointly perform computations on graphs with nn nodes (typically, nkn \gg k). The input graph is assumed to be initially randomly partitioned among the kk machines, a common implementation in many real-world systems. Communication is point-to-point, and the goal is to minimize the number of communication {\em rounds} of the computation. Our main contribution is the {\em General Lower Bound Theorem}, a theorem that can be used to show non-trivial lower bounds on the round complexity of distributed large-scale data computations. The General Lower Bound Theorem is established via an information-theoretic approach that relates the round complexity to the minimal amount of information required by machines to solve the problem. Our approach is generic and this theorem can be used in a "cookbook" fashion to show distributed lower bounds in the context of several problems, including non-graph problems. We present two applications by showing (almost) tight lower bounds for the round complexity of two fundamental graph problems, namely {\em PageRank computation} and {\em triangle enumeration}. Our approach, as demonstrated in the case of PageRank, can yield tight lower bounds for problems (including, and especially, under a stochastic partition of the input) where communication complexity techniques are not obvious. Our approach, as demonstrated in the case of triangle enumeration, can yield stronger round lower bounds as well as message-round tradeoffs compared to approaches that use communication complexity techniques

    The Range of Topological Effects on Communication

    Full text link
    We continue the study of communication cost of computing functions when inputs are distributed among kk processors, each of which is located at one vertex of a network/graph called a terminal. Every other node of the network also has a processor, with no input. The communication is point-to-point and the cost is the total number of bits exchanged by the protocol, in the worst case, on all edges. Chattopadhyay, Radhakrishnan and Rudra (FOCS'14) recently initiated a study of the effect of topology of the network on the total communication cost using tools from L1L_1 embeddings. Their techniques provided tight bounds for simple functions like Element-Distinctness (ED), which depend on the 1-median of the graph. This work addresses two other kinds of natural functions. We show that for a large class of natural functions like Set-Disjointness the communication cost is essentially nn times the cost of the optimal Steiner tree connecting the terminals. Further, we show for natural composed functions like EDXOR\text{ED} \circ \text{XOR} and XORED\text{XOR} \circ \text{ED}, the naive protocols suggested by their definition is optimal for general networks. Interestingly, the bounds for these functions depend on more involved topological parameters that are a combination of Steiner tree and 1-median costs. To obtain our results, we use some new tools in addition to ones used in Chattopadhyay et. al. These include (i) viewing the communication constraints via a linear program; (ii) using tools from the theory of tree embeddings to prove topology sensitive direct sum results that handle the case of composed functions and (iii) representing the communication constraints of certain problems as a family of collection of multiway cuts, where each multiway cut simulates the hardness of computing the function on the star topology

    On The Multiparty Communication Complexity of Testing Triangle-Freeness

    Full text link
    In this paper we initiate the study of property testing in simultaneous and non-simultaneous multi-party communication complexity, focusing on testing triangle-freeness in graphs. We consider the coordinator\textit{coordinator} model, where we have kk players receiving private inputs, and a coordinator who receives no input; the coordinator can communicate with all the players, but the players cannot communicate with each other. In this model, we ask: if an input graph is divided between the players, with each player receiving some of the edges, how many bits do the players and the coordinator need to exchange to determine if the graph is triangle-free, or far\textit{far} from triangle-free? For general communication protocols, we show that O~(k(nd)1/4+k2)\tilde{O}(k(nd)^{1/4}+k^2) bits are sufficient to test triangle-freeness in graphs of size nn with average degree dd (the degree need not be known in advance). For simultaneous\textit{simultaneous} protocols, where there is only one communication round, we give a protocol that uses O~(kn)\tilde{O}(k \sqrt{n}) bits when d=O(n)d = O(\sqrt{n}) and O~(k(nd)1/3)\tilde{O}(k (nd)^{1/3}) when d=Ω(n)d = \Omega(\sqrt{n}); here, again, the average degree dd does not need to be known in advance. We show that for average degree d=O(1)d = O(1), our simultaneous protocol is asymptotically optimal up to logarithmic factors. For higher degrees, we are not able to give lower bounds on testing triangle-freeness, but we give evidence that the problem is hard by showing that finding an edge that participates in a triangle is hard, even when promised that at least a constant fraction of the edges must be removed in order to make the graph triangle-free.Comment: To Appear in PODC 201

    Towards Tight Communication Lower Bounds for Distributed Optimisation

    Full text link
    We consider a standard distributed optimisation setting where NN machines, each holding a dd-dimensional function fif_i, aim to jointly minimise the sum of the functions i=1Nfi(x)\sum_{i = 1}^N f_i (x). This problem arises naturally in large-scale distributed optimisation, where a standard solution is to apply variants of (stochastic) gradient descent. We focus on the communication complexity of this problem: our main result provides the first fully unconditional bounds on total number of bits which need to be sent and received by the NN machines to solve this problem under point-to-point communication, within a given error-tolerance. Specifically, we show that Ω(Ndlogd/Nε)\Omega( Nd \log d / N\varepsilon) total bits need to be communicated between the machines to find an additive ϵ\epsilon-approximation to the minimum of i=1Nfi(x)\sum_{i = 1}^N f_i (x). The result holds for both deterministic and randomised algorithms, and, importantly, requires no assumptions on the algorithm structure. The lower bound is tight under certain restrictions on parameter values, and is matched within constant factors for quadratic objectives by a new variant of quantised gradient descent, which we describe and analyse. Our results bring over tools from communication complexity to distributed optimisation, which has potential for further applications
    corecore