117,643 research outputs found

    Improved Dynamic Regret of Distributed Online Multiple Frank-Wolfe Convex Optimization

    Full text link
    In this paper, we consider a distributed online convex optimization problem over a time-varying multi-agent network. The goal of this network is to minimize a global loss function through local computation and communication with neighbors. To effectively handle the optimization problem with a high-dimensional and structural constraint set, we develop a distributed online multiple Frank-Wolfe algorithm to avoid the expensive computational cost of projection operation. The dynamic regret bounds are established as O(T1−γ+HT)\mathcal{O}(T^{1-\gamma}+H_T) with the linear oracle number O(T1+γ)\mathcal{O} (T^{1+\gamma}), which depends on the horizon (total iteration number) TT, the function variation HTH_T, and the tuning parameter 0<γ<10<\gamma<1. In particular, when the prior knowledge of HTH_T and TT is available, the bound can be enhanced to O(1+HT)\mathcal{O} (1+H_T). Moreover, we illustrate the significant advantages of the multiple iteration technique and reveal a trade-off between dynamic regret bound, computational cost, and communication cost. Finally, the performance of our algorithm is verified and compared through the distributed online ridge regression problems with two constraint sets

    Query Processing In Location-based Services

    Get PDF
    With the advances in wireless communication technology and advanced positioning systems, a variety of Location-Based Services (LBS) become available to the public. Mobile users can issue location-based queries to probe their surrounding environments. One important type of query in LBS is moving monitoring queries over mobile objects. Due to the high frequency in location updates and the expensive cost of continuous query processing, server computation capacity and wireless communication bandwidth are the two limiting factors for large-scale deployment of moving object database systems. To address both of the scalability factors, distributed computing has been considered. These schemes enable moving objects to participate as a peer in query processing to substantially reduce the demand on server computation, and wireless communications associated with location updates. In the first part of this dissertation, we propose a distributed framework to process moving monitoring queries over moving objects in a spatial network environment. In the second part of this dissertation, in order to reduce the communication cost, we leverage both on-demand data access and periodic broadcast to design a new hybrid distributed solution for moving monitoring queries in an open space environment. Location-based services make our daily life more convenient. However, to receive the services, one has to reveal his/her location and query information when issuing locationbased queries. This could lead to privacy breach if these personal information are possessed by some untrusted parties. In the third part of this dissertation, we introduce a new privacy protection measure called query l-diversity, and provide two cloaking algorithms to achieve both location kanonymity and query l-diversity to better protect user privacy. In the fourth part of this dissertation, we design a hybrid three-tier architecture to help reduce privacy exposure. In the fifth part of this dissertation, we propose to use Road Network Embedding technique to process privacy protected queries

    Scalable and Secure Aggregation in Distributed Networks

    Full text link
    We consider the problem of computing an aggregation function in a \emph{secure} and \emph{scalable} way. Whereas previous distributed solutions with similar security guarantees have a communication cost of O(n3)O(n^3), we present a distributed protocol that requires only a communication complexity of O(nlog⁥3n)O(n\log^3 n), which we prove is near-optimal. Our protocol ensures perfect security against a computationally-bounded adversary, tolerates (1/2−ϔ)n(1/2-\epsilon)n malicious nodes for any constant 1/2>Ï”>01/2 > \epsilon > 0 (not depending on nn), and outputs the exact value of the aggregated function with high probability

    Parallelizing RRT on large-scale distributed-memory architectures

    Get PDF
    This paper addresses the problem of parallelizing the Rapidly-exploring Random Tree (RRT) algorithm on large-scale distributed-memory architectures, using the Message Passing Interface. We compare three parallel versions of RRT based on classical parallelization schemes. We evaluate them on different motion planning problems and analyze the various factors influencing their performance

    Dynamic load balancing for the distributed mining of molecular structures

    Get PDF
    In molecular biology, it is often desirable to find common properties in large numbers of drug candidates. One family of methods stems from the data mining community, where algorithms to find frequent graphs have received increasing attention over the past years. However, the computational complexity of the underlying problem and the large amount of data to be explored essentially render sequential algorithms useless. In this paper, we present a distributed approach to the frequent subgraph mining problem to discover interesting patterns in molecular compounds. This problem is characterized by a highly irregular search tree, whereby no reliable workload prediction is available. We describe the three main aspects of the proposed distributed algorithm, namely, a dynamic partitioning of the search space, a distribution process based on a peer-to-peer communication framework, and a novel receiverinitiated load balancing algorithm. The effectiveness of the distributed method has been evaluated on the well-known National Cancer Institute’s HIV-screening data set, where we were able to show close-to linear speedup in a network of workstations. The proposed approach also allows for dynamic resource aggregation in a non dedicated computational environment. These features make it suitable for large-scale, multi-domain, heterogeneous environments, such as computational grids
    • 

    corecore