1,108 research outputs found

    Tournaments, 4-uniform hypergraphs, and an exact extremal result

    Full text link
    We consider 44-uniform hypergraphs with the maximum number of hyperedges subject to the condition that every set of 55 vertices spans either 00 or exactly 22 hyperedges and give a construction, using quadratic residues, for an infinite family of such hypergraphs with the maximum number of hyperedges. Baber has previously given an asymptotically best-possible result using random tournaments. We give a connection between Baber's result and our construction via Paley tournaments and investigate a `switching' operation on tournaments that preserves hypergraphs arising from this construction.Comment: 23 pages, 6 figure

    Ramsey-nice families of graphs

    Get PDF
    For a finite family F\mathcal{F} of fixed graphs let Rk(F)R_k(\mathcal{F}) be the smallest integer nn for which every kk-coloring of the edges of the complete graph KnK_n yields a monochromatic copy of some F∈FF\in\mathcal{F}. We say that F\mathcal{F} is kk-nice if for every graph GG with χ(G)=Rk(F)\chi(G)=R_k(\mathcal{F}) and for every kk-coloring of E(G)E(G) there exists a monochromatic copy of some F∈FF\in\mathcal{F}. It is easy to see that if F\mathcal{F} contains no forest, then it is not kk-nice for any kk. It seems plausible to conjecture that a (weak) converse holds, namely, for any finite family of graphs F\mathcal{F} that contains at least one forest, and for all k≥k0(F)k\geq k_0(\mathcal{F}) (or at least for infinitely many values of kk), F\mathcal{F} is kk-nice. We prove several (modest) results in support of this conjecture, showing, in particular, that it holds for each of the three families consisting of two connected graphs with 3 edges each and observing that it holds for any family F\mathcal{F} containing a forest with at most 2 edges. We also study some related problems and disprove a conjecture by Aharoni, Charbit and Howard regarding the size of matchings in regular 3-partite 3-uniform hypergraphs.Comment: 20 pages, 2 figure

    Spectral Properties of Oriented Hypergraphs

    Full text link
    An oriented hypergraph is a hypergraph where each vertex-edge incidence is given a label of +1+1 or −1-1. The adjacency and Laplacian eigenvalues of an oriented hypergraph are studied. Eigenvalue bounds for both the adjacency and Laplacian matrices of an oriented hypergraph which depend on structural parameters of the oriented hypergraph are found. An oriented hypergraph and its incidence dual are shown to have the same nonzero Laplacian eigenvalues. A family of oriented hypergraphs with uniformally labeled incidences is also studied. This family provides a hypergraphic generalization of the signless Laplacian of a graph and also suggests a natural way to define the adjacency and Laplacian matrices of a hypergraph. Some results presented generalize both graph and signed graph results to a hypergraphic setting.Comment: For the published version of the article see http://repository.uwyo.edu/ela/vol27/iss1/24

    Degrees in oriented hypergraphs and sparse Ramsey theory

    Full text link
    Let GG be an rr-uniform hypergraph. When is it possible to orient the edges of GG in such a way that every pp-set of vertices has some pp-degree equal to 00? (The pp-degrees generalise for sets of vertices what in-degree and out-degree are for single vertices in directed graphs.) Caro and Hansberg asked if the obvious Hall-type necessary condition is also sufficient. Our main aim is to show that this is true for rr large (for given pp), but false in general. Our counterexample is based on a new technique in sparse Ramsey theory that may be of independent interest.Comment: 20 pages, 3 figure

    Embedding large subgraphs into dense graphs

    Full text link
    What conditions ensure that a graph G contains some given spanning subgraph H? The most famous examples of results of this kind are probably Dirac's theorem on Hamilton cycles and Tutte's theorem on perfect matchings. Perfect matchings are generalized by perfect F-packings, where instead of covering all the vertices of G by disjoint edges, we want to cover G by disjoint copies of a (small) graph F. It is unlikely that there is a characterization of all graphs G which contain a perfect F-packing, so as in the case of Dirac's theorem it makes sense to study conditions on the minimum degree of G which guarantee a perfect F-packing. The Regularity lemma of Szemeredi and the Blow-up lemma of Komlos, Sarkozy and Szemeredi have proved to be powerful tools in attacking such problems and quite recently, several long-standing problems and conjectures in the area have been solved using these. In this survey, we give an outline of recent progress (with our main emphasis on F-packings, Hamiltonicity problems and tree embeddings) and describe some of the methods involved
    • …
    corecore