4 research outputs found

    Dynamic Complexity and Causality Analysis of Scalp EEG for Detection of Cognitive Deficits

    Get PDF
    This dissertation explores the potential of scalp electroencephalography (EEG) for the detection and evaluation of neurological deficits due to moderate/severe traumatic brain injury (TBI), mild cognitive impairment (MCI), and early Alzheimer’s disease (AD). Neurological disorders often cannot be accurately diagnosed without the use of advanced imaging modalities such as computed tomography (CT), magnetic resonance imaging (MRI), and positron emission tomography (PET). Non-quantitative task-based examinations are also used. None of these techniques, however, are typically performed in the primary care setting. Furthermore, the time and expense involved often deters physicians from performing them, leading to potential worse prognoses for patients. If feasible, screening for cognitive deficits using scalp EEG would provide a fast, inexpensive, and less invasive alternative for evaluation of TBI post injury and detection of MCI and early AD. In this work various measures of EEG complexity and causality are explored as means of detecting cognitive deficits. Complexity measures include eventrelated Tsallis entropy, multiscale entropy, inter-regional transfer entropy delays, and regional variation in common spectral features, and graphical analysis of EEG inter-channel coherence. Causality analysis based on nonlinear state space reconstruction is explored in case studies of intensive care unit (ICU) signal reconstruction and detection of cognitive deficits via EEG reconstruction models. Significant contributions in this work include: (1) innovative entropy-based methods for analyzing event-related EEG data; (2) recommendations regarding differences in MCI/AD of common spectral and complexity features for different scalp regions and protocol conditions; (3) development of novel artificial neural network techniques for multivariate signal reconstruction; and (4) novel EEG biomarkers for detection of dementia

    Dynamics of the cortical responsiveness during extended wakefulness, in young and older participants.

    Get PDF
    Although it has been established that human brain physiology and cognition are under the joint effect of the sleep homeostasis and the circadian alerting signal, the detrimental effect of sleep deprivation is still mostly seen as merely a consequence of a lack of sleep. While this approach is valuable, in order to develop a complete understanding, a circadian perspective needs to be integrated. However, a major difficulty of measuring circadian rhythmicity stems from the complexity of assessing it, because confounders such as light, activity, meals etc. could mask the underlying circadian regulation. Here, we performed two constant routine studies that allow us to measure the interaction between sleep homeostasis and the circadian processes at the cortical level. During the studies, three complementary aspects of the cortical function were investigated, as well as their associations with behavioural performance, and age-related changes of the cortical dynamics. In phase I of the study, the dynamics of cortical excitability, and of response scattering and complexity were described during a 28 hour wake extension protocol in young participants (18-30 y). In phase II, the dynamics of cortical excitability and response complexity were investigated during a 34 hour wake extension in young (18-30 y) and older (50-70 y) participants in order to address lifetime changes. Overall, the results of this thesis demonstrated an age-dependent homeostatic and circadian regulation of basic cortical function. That was especially evident at the local level, when focusing on cortical excitability profile: young participants showed a clear circadian rhythmicity and sleep homeostasis regulation, the dynamic of which was dampened in the older participants. At the global level, cortical response scattering and complexity changed with time spent awake, i.e. according to the circadian phase Furthermore, cortical complexity response was higher in the older group, showing a simple age effect, but the dynamic did not differ between the two age groups. Preliminary analyses demonstrated that these cortical dynamics sustain part of the profile of behavioural performance across the circadian cycle. Importantly, older people with higher cortical excitability, particularly during the biological night, were performing better at higher order tasks, possibly indicating that older people that maintain a degree of sensitivity toward sleep homeostasis and circadian processes perform better. Understanding the principal forces that regulate the dynamics of cortical neurophysiology in two age groups –and their impact on cognition– is of uppermost importance for our ageing society, in which sleep deprivation and circadian misalignment are commonplace

    Augmentation of Brain Function: Facts, Fiction and Controversy. Volume III: From Clinical Applications to Ethical Issues and Futuristic Ideas

    Get PDF
    The final volume in this tripartite series on Brain Augmentation is entitled “From Clinical Applications to Ethical Issues and Futuristic Ideas”. Many of the articles within this volume deal with translational efforts taking the results of experiments on laboratory animals and applying them to humans. In many cases, these interventions are intended to help people with disabilities in such a way so as to either restore or extend brain function. Traditionally, therapies in brain augmentation have included electrical and pharmacological techniques. In contrast, some of the techniques discussed in this volume add specificity by targeting select neural populations. This approach opens the door to where and how to promote the best interventions. Along the way, results have empowered the medical profession by expanding their understanding of brain function. Articles in this volume relate novel clinical solutions for a host of neurological and psychiatric conditions such as stroke, Parkinson’s disease, Huntington’s disease, epilepsy, dementia, Alzheimer’s disease, autism spectrum disorders (ASD), traumatic brain injury, and disorders of consciousness. In disease, symptoms and signs denote a departure from normal function. Brain augmentation has now been used to target both the core symptoms that provide specificity in the diagnosis of a disease, as well as other constitutional symptoms that may greatly handicap the individual. The volume provides a report on the use of repetitive transcranial magnetic stimulation (rTMS) in ASD with reported improvements of core deficits (i.e., executive functions). TMS in this regard departs from the present-day trend towards symptomatic treatment that leaves unaltered the root cause of the condition. In diseases, such as schizophrenia, brain augmentation approaches hold promise to avoid lengthy pharmacological interventions that are usually riddled with side effects or those with limiting returns as in the case of Parkinson’s disease. Brain stimulation can also be used to treat auditory verbal hallucination, visuospatial (hemispatial) neglect, and pain in patients suffering from multiple sclerosis. The brain acts as a telecommunication transceiver wherein different bandwidth of frequencies (brainwave oscillations) transmit information. Their baseline levels correlate with certain behavioral states. The proper integration of brain oscillations provides for the phenomenon of binding and central coherence. Brain augmentation may foster the normalization of brain oscillations in nervous system disorders. These techniques hold the promise of being applied remotely (under the supervision of medical personnel), thus overcoming the obstacle of travel in order to obtain healthcare. At present, traditional thinking would argue the possibility of synergism among different modalities of brain augmentation as a way of increasing their overall effectiveness and improving therapeutic selectivity. Thinking outside of the box would also provide for the implementation of brain-to-brain interfaces where techniques, proper to artificial intelligence, could allow us to surpass the limits of natural selection or enable communications between several individual brains sharing memories, or even a global brain capable of self-organization. Not all brains are created equal. Brain stimulation studies suggest large individual variability in response that may affect overall recovery/treatment, or modify desired effects of a given intervention. The subject’s age, gender, hormonal levels may affect an individual’s cortical excitability. In addition, this volume discusses the role of social interactions in the operations of augmenting technologies. Finally, augmenting methods could be applied to modulate consciousness, even though its neural mechanisms are poorly understood. Finally, this volume should be taken as a debate on social, moral and ethical issues on neurotechnologies. Brain enhancement may transform the individual into someone or something else. These techniques bypass the usual routes of accommodation to environmental exigencies that exalted our personal fortitude: learning, exercising, and diet. This will allow humans to preselect desired characteristics and realize consequent rewards without having to overcome adversity through more laborious means. The concern is that humans may be playing God, and the possibility of an expanding gap in social equity where brain enhancements may be selectively available to the wealthier individuals. These issues are discussed by a number of articles in this volume. Also discussed are the relationship between the diminishment and enhancement following the application of brain-augmenting technologies, the problem of “mind control” with BMI technologies, free will the duty to use cognitive enhancers in high-responsibility professions, determining the population of people in need of brain enhancement, informed public policy, cognitive biases, and the hype caused by the development of brain- augmenting approaches
    corecore