11 research outputs found

    Accurate Light Field Depth Estimation with Superpixel Regularization over Partially Occluded Regions

    Full text link
    Depth estimation is a fundamental problem for light field photography applications. Numerous methods have been proposed in recent years, which either focus on crafting cost terms for more robust matching, or on analyzing the geometry of scene structures embedded in the epipolar-plane images. Significant improvements have been made in terms of overall depth estimation error; however, current state-of-the-art methods still show limitations in handling intricate occluding structures and complex scenes with multiple occlusions. To address these challenging issues, we propose a very effective depth estimation framework which focuses on regularizing the initial label confidence map and edge strength weights. Specifically, we first detect partially occluded boundary regions (POBR) via superpixel based regularization. Series of shrinkage/reinforcement operations are then applied on the label confidence map and edge strength weights over the POBR. We show that after weight manipulations, even a low-complexity weighted least squares model can produce much better depth estimation than state-of-the-art methods in terms of average disparity error rate, occlusion boundary precision-recall rate, and the preservation of intricate visual features

    VommaNet: an End-to-End Network for Disparity Estimation from Reflective and Texture-less Light Field Images

    Full text link
    The precise combination of image sensor and micro-lens array enables lenslet light field cameras to record both angular and spatial information of incoming light, therefore, one can calculate disparity and depth from light field images. In turn, 3D models of the recorded objects can be recovered, which is a great advantage over other imaging system. However, reflective and texture-less areas in light field images have complicated conditions, making it hard to correctly calculate disparity with existing algorithms. To tackle this problem, we introduce a novel end-to-end network VommaNet to retrieve multi-scale features from reflective and texture-less regions for accurate disparity estimation. Meanwhile, our network has achieved similar or better performance in other regions for both synthetic light field images and real-world data compared to the state-of-the-art algorithms. Currently, we achieve the best score for mean squared error (MSE) on HCI 4D Light Field Benchmark

    EPINET: A Fully-Convolutional Neural Network Using Epipolar Geometry for Depth from Light Field Images

    Full text link
    Light field cameras capture both the spatial and the angular properties of light rays in space. Due to its property, one can compute the depth from light fields in uncontrolled lighting environments, which is a big advantage over active sensing devices. Depth computed from light fields can be used for many applications including 3D modelling and refocusing. However, light field images from hand-held cameras have very narrow baselines with noise, making the depth estimation difficult. any approaches have been proposed to overcome these limitations for the light field depth estimation, but there is a clear trade-off between the accuracy and the speed in these methods. In this paper, we introduce a fast and accurate light field depth estimation method based on a fully-convolutional neural network. Our network is designed by considering the light field geometry and we also overcome the lack of training data by proposing light field specific data augmentation methods. We achieved the top rank in the HCI 4D Light Field Benchmark on most metrics, and we also demonstrate the effectiveness of the proposed method on real-world light-field images.Comment: Accepted to CVPR 2018, Total 10 page

    Steered mixture-of-experts for light field images and video : representation and coding

    Get PDF
    Research in light field (LF) processing has heavily increased over the last decade. This is largely driven by the desire to achieve the same level of immersion and navigational freedom for camera-captured scenes as it is currently available for CGI content. Standardization organizations such as MPEG and JPEG continue to follow conventional coding paradigms in which viewpoints are discretely represented on 2-D regular grids. These grids are then further decorrelated through hybrid DPCM/transform techniques. However, these 2-D regular grids are less suited for high-dimensional data, such as LFs. We propose a novel coding framework for higher-dimensional image modalities, called Steered Mixture-of-Experts (SMoE). Coherent areas in the higher-dimensional space are represented by single higher-dimensional entities, called kernels. These kernels hold spatially localized information about light rays at any angle arriving at a certain region. The global model consists thus of a set of kernels which define a continuous approximation of the underlying plenoptic function. We introduce the theory of SMoE and illustrate its application for 2-D images, 4-D LF images, and 5-D LF video. We also propose an efficient coding strategy to convert the model parameters into a bitstream. Even without provisions for high-frequency information, the proposed method performs comparable to the state of the art for low-to-mid range bitrates with respect to subjective visual quality of 4-D LF images. In case of 5-D LF video, we observe superior decorrelation and coding performance with coding gains of a factor of 4x in bitrate for the same quality. At least equally important is the fact that our method inherently has desired functionality for LF rendering which is lacking in other state-of-the-art techniques: (1) full zero-delay random access, (2) light-weight pixel-parallel view reconstruction, and (3) intrinsic view interpolation and super-resolution

    Noise-Resilient Depth Estimation for Light Field Images Using Focal Stack and FFT Analysis

    Full text link
    Depth estimation for light field images is essential for applications such as light field image compression, reconstructing perspective views and 3D reconstruction. Previous depth map estimation approaches do not capture sharp transitions around object boundaries due to occlusions, making many of the current approaches unreliable at depth discontinuities. This is especially the case for light field images because the pixels do not exhibit photo-consistency in the presence of occlusions. In this paper, we propose an algorithm to estimate the depth map for light field images using depth from defocus. Our approach uses a small patch size of pixels in each focal stack image for comparing defocus cues, allowing the algorithm to generate sharper depth boundaries. Then, in contrast to existing approaches that use defocus cues for depth estimation, we use frequency domain analysis image similarity checking to generate the depth map. Processing in the frequency domain reduces the individual pixel errors that occur while directly comparing RGB images, making the algorithm more resilient to noise. The algorithm has been evaluated on both a synthetic image dataset and real-world images in the JPEG dataset. Experimental results demonstrate that our proposed algorithm outperforms state-of-the-art depth estimation techniques for light field images, particularly in case of noisy images.</jats:p

    Light field image processing: an overview

    Get PDF
    Light field imaging has emerged as a technology allowing to capture richer visual information from our world. As opposed to traditional photography, which captures a 2D projection of the light in the scene integrating the angular domain, light fields collect radiance from rays in all directions, demultiplexing the angular information lost in conventional photography. On the one hand, this higher dimensional representation of visual data offers powerful capabilities for scene understanding, and substantially improves the performance of traditional computer vision problems such as depth sensing, post-capture refocusing, segmentation, video stabilization, material classification, etc. On the other hand, the high-dimensionality of light fields also brings up new challenges in terms of data capture, data compression, content editing, and display. Taking these two elements together, research in light field image processing has become increasingly popular in the computer vision, computer graphics, and signal processing communities. In this paper, we present a comprehensive overview and discussion of research in this field over the past 20 years. We focus on all aspects of light field image processing, including basic light field representation and theory, acquisition, super-resolution, depth estimation, compression, editing, processing algorithms for light field display, and computer vision applications of light field data
    corecore