651 research outputs found

    Hurdles for Developers in Cryptography

    Get PDF
    Prior research has shown that cryptography is hard to use for developers. We aim to understand what cryptography issues developers face in practice. We clustered 91 954 cryptography-related questions on the Stack Overflow website, and manually analyzed a significant sample (i.e., 383) of the questions to comprehend the crypto challenges developers commonly face in this domain. We found that either developers have a distinct lack of knowledge in understanding the fundamental concepts, e.g., OpenSSL, public-key cryptography or password hashing, or the usability of crypto libraries undermined developer performance to correctly realize a crypto scenario. This is alarming and indicates the need for dedicated research to improve the design of crypto APIs

    The State of Practice for Security Unit Testing: Towards Data Driven Strategies to Shift Security into Developer\u27s Automated Testing Workflows

    Get PDF
    The pressing need to “shift security left” in the software development lifecycle has motivated efforts to adapt the iterative and continuous process models used in practice today. Security unit testing is praised by practitioners and recommended by expert groups, usually in the context of DevSecOps and achieving “continuous security”. In addition to vulnerability testing and standards adherence, this technique can help developers verify that security controls are implemented correctly, i.e. functional security testing. Further, the means by which security unit testing can be integrated into developer workflows is unique from other standalone tools as it is an adaptation of practices and infrastructure developers are already familiar with. Yet, software engineering researchers have so far failed to include this technique in their empirical studies on secure development and little is known about the state of practice for security unit testing. This dissertation is motivated by the disconnect between promotion of security unit testing and the lack of empirical evidence on how it is and can be applied. The goal of this work was to address the disconnect towards identifying actionable strategies to promote wider adoption and mitigate observed challenges. Three mixed-method empirical studies were conducted wherein practitioner-authored unit test code, Q&A posts, and grey literature were analyzed through three lenses: Practices (what they do), Perspectives and Guidelines (what and how they think it should be done), and Pain Points (what challenges they face) to incorporate both technical and human factors of this phenomena. Accordingly, this work contributes novel and important insights into how developers write functional unit tests for at least nine security controls, including a taxonomy of 53 authentication unit test cases derived from real code and a detailed analysis of seven unique pain points that developers seek help with from peers on Q&A sites. Recommendations given herein for conducting and adopting security unit testing, including mitigating challenges and addressing gaps between available and needed support, are grounded in the guidelines and perspectives on the benefits, limitations, use cases, and integration strategies shared in grey literature authored by practitioners

    Towards understanding the challenges faced by machine learning software developers and enabling automated solutions

    Get PDF
    Modern software systems are increasingly including machine learning (ML) as an integral component. However, we do not yet understand the difficulties faced by software developers when learning about ML libraries and using them within their systems. To fill that gap this thesis reports on a detailed (manual) examination of 3,243 highly-rated Q&A posts related to ten ML libraries, namely Tensorflow, Keras, scikitlearn, Weka, Caffe, Theano, MLlib, Torch, Mahout, and H2O, on Stack Overflow, a popular online technical Q&A forum. Our findings reveal the urgent need for software engineering (SE) research in this area. The second part of the thesis particularly focuses on understanding the Deep Neural Network (DNN) bug characteristics. We study 2,716 high-quality posts from Stack Overflow and 500 bug fix commits from Github about five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand the types of bugs, their root causes and impacts, bug-prone stage of deep learning pipeline as well as whether there are some common antipatterns found in this buggy software. While exploring the bug characteristics, our findings imply that repairing software that uses DNNs is one such unmistakable SE need where automated tools could be beneficial; however, we do not fully understand challenges to repairing and patterns that are utilized when manually repairing DNNs. So, the third part of this thesis presents a comprehensive study of bug fix patterns to address these questions. We have studied 415 repairs from Stack Overflow and 555 repairs from Github for five popular deep learning libraries Caffe, Keras, Tensorflow, Theano, and Torch to understand challenges in repairs and bug repair patterns. Our key findings reveal that DNN bug fix patterns are distinctive compared to traditional bug fix patterns and the most common bug fix patterns are fixing data dimension and neural network connectivity. Finally, we propose an automatic technique to detect ML Application Programming Interface (API) misuses. We started with an empirical study to understand ML API misuses. Our study shows that ML API misuse is prevalent and distinct compared to non-ML API misuses. Inspired by these findings, we contributed Amimla (Api Misuse In Machine Learning Apis) an approach and a tool for ML API misuse detection. Amimla relies on several technical innovations. First, we proposed an abstract representation of ML pipelines to use in misuse detection. Second, we proposed an abstract representation of neural networks for deep learning related APIs. Third, we have developed a representation strategy for constraints on ML APIs. Finally, we have developed a misuse detection strategy for both single and multi-APIs. Our experimental evaluation shows that Amimla achieves a high average accuracy of ∌80% on two benchmarks of misuses from Stack Overflow and Github

    What kind of questions do developers ask on Stack Overflow? A comparison of automated approaches to classify posts into question categories

    Get PDF
    On question and answer sites, such as Stack Overflow (SO), developers use tags to label the content of a post and to support developers in question searching and browsing. However, these tags mainly refer to technological aspects instead of the purpose of the question. Tagging questions with their purpose can add a new dimension to the identification of discussed topics in posts on SO. In this paper, we aim at automating the classification of SO question posts into seven question categories. As a first step, we harmonized existing taxonomies of question categories and then, we manually classified 1,000 SO questions according to our new taxonomy. Additionally to the question category, we marked the phrases that indicate a question category for each of the posts. We then use this data set to automate the classification of posts using two approaches. For the first approach, we manually analyzed the phrases to find patterns. Based on regular expressions, we implemented a classifier, for each of the categories, that determines whether a post belongs to a category. These regular expressions are derived by analyzing patterns in the phrases. In the second approach, we use the curated data set to train classification models of supervised machine learning algorithms (Random Forest and Support Vector Machines). For the machine learning algorithms, we experimented with 1,312 different configurations regarding the preprocessing of the text and the representation of the input data. Then, we compared the performance of the regex approach with the performance of the best configuration that uses machine learning algorithms on a validation set of 110 posts. The results show that using the regular expression approach, we can classify posts into the correct question category with an average precision and recall of 0.90, and an MCC of 0.68. Additionally, we applied the regex approach on all questions of SO that deal with Android app development and investigated the co-occurrence of question categories in posts. We found that the categories API usage, Conceptual, and Discrepancy are the most frequently assigned question categories and that they also occur together frequently. Our approach can be used to support developers in browsing SO discussions or researchers in building recommender systems based on SO

    Human Factors in Secure Software Development

    Get PDF
    While security research has made significant progress in the development of theoretically secure methods, software and algorithms, software still comes with many possible exploits, many of those using the human factor. The human factor is often called ``the weakest link'' in software security. To solve this, human factors research in security and privacy focus on the users of technology and consider their security needs. The research then asks how technology can serve users while minimizing risks and empowering them to retain control over their own data. However, these concepts have to be implemented by developers whose security errors may proliferate to all of their software's users. For example, software that stores data in an insecure way, does not secure network traffic correctly, or otherwise fails to adhere to secure programming best practices puts all of the software's users at risk. It is therefore critical that software developers implement security correctly. However, in addition to security rarely being a primary concern while producing software, developers may also not have extensive awareness, knowledge, training or experience in secure development. A lack of focus on usability in libraries, documentation, and tools that they have to use for security-critical components may exacerbate the problem by blowing up the investment of time and effort needed to "get security right". This dissertation's focus is how to support developers throughout the process of implementing software securely. This research aims to understand developers' use of resources, their mindsets as they develop, and how their background impacts code security outcomes. Qualitative, quantitative and mixed methods were employed online and in the laboratory, and large scale datasets were analyzed to conduct this research. This research found that the information sources developers use can contribute to code (in)security: copying and pasting code from online forums leads to achieving functional code quickly compared to using official documentation resources, but may introduce vulnerable code. We also compared the usability of cryptographic APIs, finding that poor usability, unsafe (possibly obsolete) defaults and unhelpful documentation also lead to insecure code. On the flip side, well-thought out documentation and abstraction levels can help improve an API's usability and may contribute to secure API usage. We found that developer experience can contribute to better security outcomes, and that studying students in lieu of professional developers can produce meaningful insights into developers' experiences with secure programming. We found that there is a multitude of online secure development advice, but that these advice sources are incomplete and may be insufficient for developers to retrieve help, which may cause them to choose un-vetted and potentially insecure resources. This dissertation supports that (a) secure development is subject to human factor challenges and (b) security can be improved by addressing these challenges and supporting developers. The work presented in this dissertation has been seminal in establishing human factors in secure development research within the security and privacy community and has advanced the dialogue about the rigorous use of empirical methods in security and privacy research. In these research projects, we repeatedly found that usability issues of security and privacy mechanisms, development practices, and operation routines are what leads to the majority of security and privacy failures that affect millions of end users
    • 

    corecore