51 research outputs found

    Modeling and Analysis of Energy Efficiency in Wireless Handset Transceiver Systems

    Get PDF
    As wireless communication devices are taking a significant part in our daily life, research steps toward making these devices even faster and smarter are accelerating rapidly. The main limiting factors are energy and power consumption. Many techniques are utilized to increase the battery’s capacity (Ampere per Hour), but that comes with a cost of raising the safety concerns. The other way to increase the battery’s life is to decrease the energy consumption of the devices. In this work, we analyze energy-efficient communications for wireless devices based on an advanced energy consumption model that takes into account a broad range of parameters. The developed model captures relationships between transmission power, transceiver distance, modulation order, channel fading, power amplifier (PA) effects, power control, multiple antennas, as well as other circuit components in the radio frequency (RF) transceiver. Based on the developed model, we are able to identify the optimal modulation order in terms of energy efficiency under different situations (e.g., different transceiver distance, different PA classes and efficiencies, different pulse shape, etc). Furthermore, we capture the impact of system level and network level parameters on the PA energy via peak to average ratio (PAR) and power control. We are also able to identify the impact of multiple antennas at the handset on the energy consumption and the transmitted bit rate for few and many antennas (conventional multiple-input-multiple-output (MIMO) and massive MIMO) at the base station. This work provides an important framework for analyzing energy-efficient communications for different wireless systems ranging from cellular networks to wireless internet of things

    Antennas and Propagation Aspects for Emerging Wireless Communication Technologies

    Get PDF
    The increasing demand for high data rate applications and the delivery of zero-latency multimedia content drives technological evolutions towards the design and implementation of next-generation broadband wireless networks. In this context, various novel technologies have been introduced, such as millimeter wave (mmWave) transmission, massive multiple input multiple output (MIMO) systems, and non-orthogonal multiple access (NOMA) schemes in order to support the vision of fifth generation (5G) wireless cellular networks. The introduction of these technologies, however, is inextricably connected with a holistic redesign of the current transceiver structures, as well as the network architecture reconfiguration. To this end, ultra-dense network deployment along with distributed massive MIMO technologies and intermediate relay nodes have been proposed, among others, in order to ensure an improved quality of services to all mobile users. In the same framework, the design and evaluation of novel antenna configurations able to support wideband applications is of utmost importance for 5G context support. Furthermore, in order to design reliable 5G systems, the channel characterization in these frequencies and in the complex propagation environments cannot be ignored because it plays a significant role. In this Special Issue, fourteen papers are published, covering various aspects of novel antenna designs for broadband applications, propagation models at mmWave bands, the deployment of NOMA techniques, radio network planning for 5G networks, and multi-beam antenna technologies for 5G wireless communications

    Ultra-Dense Networks in 5G and Beyond: Challenges and Promising Solutions

    Get PDF
    Ultra-Dense Network (UDN) is one of the promising and leading directions in Fifth Generation and beyond (5GB) networks. In UDNs, Small Cells (SCs) or Small Base Stations (SBSs) such as microcells, picocells, or femtocells are deployed in high densities where inter-site distances are within the range of few or tens of meters. UDNs also require that SCs are typically deployed in relatively large densities compared to the Human-Type Communication Users (HTCUs) such as smartphones, tablets, and/or laptops. Such SCs are characterized by their low transmission powers, small coverage areas, and low cost. Hence, the deployment of the SCs can be done either by the cellular network operators or by the customers themselves within their premises to maintain certain levels of Quality of Service (QoS). However, the randomness of the deployment of the SCs along with the small inter-site distances may degrade the achievable performance due to the uncontrolled Inter-Cell Interference (ICI). Therefore, idle mode capability is an inevitable feature in the high-density regime of SCs. In idle mode, a SC is switched off to prevent ICI when no user is associated to it. In doing so, we can imagine the UDN as a mobile network that keeps following the users to remain as close as possible to them. In 5G, different use cases are required to be supported such as enhanced Mobile Broad-Band (eMBB), Ultra-Reliable and Low-Latency Communication (URLLC), and massive Machine-Type Communication (mMTC). On one hand, the inevitable upcoming era of smart living requires unprecedented advances in enabling technologies to support the main building blocks of this era which are Internet of Things (IoT) devices. Machine-Type Communication (MTC), the cellular version of Machine-to-Machine (M2M) communication, constitutes the main enabling technology to support communications among such devices with minimal or even without human intervention. The massive number of these devices, Machine-Type Communication Devices (MTCDs), and the immense amount of traffic generated by them require a paramount shift in cellular and non-cellular wireless technologies to achieve the required connectivity. On the other hand, the sky-rocketing number of data hungry applications installed on human-held devices, or HTCUs, such as video conferencing and virtual reality applications require their own advances in the wireless infrastructure in terms of high capacity, enhanced reliability, and reduced latency. Throughout this thesis, we exploit the UDN infrastructure integrated with other 5G resources and enabling technologies to explore the possible opportunities in supporting both HTC and MTC, either solely or simultaneously. Given the shorter distances between transmitters and receivers encountered in UDNs, more realistic models of the path loss must be adopted such as the Stretched Exponential Path Loss (SEPL) model. We use tools from stochastic geometry to formulate novel mathematical frameworks that can be used to investigate the achievable performance without having to rely on extensive time-consuming Monte-Carlo simulations. Besides, the derived analytical expressions can be used to tune some system parameters or to propose some approaches/techniques that can be followed to optimize the performance of the system under certain circumstances. Tackling practical scenarios, the complexity, or sometimes in-feasibility, of providing unlimited backhaul capacity for the massive number of SCs must be considered. In this regard, we adopt multiple-association where each HTCU is allowed to associate with multiple SCs. By doing so, we carefully split the targeted traffic among several backhaul links to mitigate the bottleneck forced by limited backhaul capacities. It is noteworthy that for coexisting MTCDs with the HTCUs, activating more SCs would allow more MTCDs to be supported without introducing additional ICI towards the HTCUs. Targeting different application, multiple-association can be also adopted to tackle computation-intensive applications of HTCUs. In particular, for applications such as augmented reality and environment recognition that require heavy computations, a task is split and partially offloaded to multiple SCs with integrated Edge Computing Servers (ECSs). Then, the task partitions are processed in parallel to reduce the end-to-end processing delay. Based on relative densities between HTCUs and SCs, we use tools from stochastic geometry to develop an offline adaptive task division technique that further reduces the average end-to-end processing delay per user. With the frequent serious data breaches experienced in recent years, securing data has become more of a business risk rather than an information technology (IT) issue. Hence, we exploit the dense number of SCs found in UDN along with Physical Layer Security (PLS) protocols to secure data transfer. In particular, we again adopt multiple-association and split the data of HTCUs into multiple streams originating from different SCs to prevent illegitimate receivers from eavesdropping. To support massive number of MTCDs, we deploy the Non-Orthogonal Multiple-Access (NOMA) technique. Using power NOMA, more than one device can be supported over the same frequency/time resource and their signals are distinguished at the receiver using Successive Interference Cancellation (SIC). In the same scope, exploiting the available resources in 5G and beyond networks, we investigate a mMTC scenario in an UDN operating in the Millimeter Wave (mmWave) band and supported by wireless backhauling. In doing so, we shed lights on the possible gains of utilizing the mmWave band where the severe penetration losses of mmWave can be exploited to mitigate the significant ICI in UDNs. Also, the vast bandwidth available in the mmWave band helps to allocate more Resource Blocks (RBs) per SCs which corresponds to supporting more MTCDs

    Outline of a Subversive Technopoetic: for a Libertarian Pedartgogy

    Get PDF
    The thesis explores the relationships between knowledge and knowing in contemporary 21st century information society, using the foundation of the Faculty of Media Design & New Media Art at the Nuova Accademia di Belle Arti in Milano as a research apparatus. This Faculty was established between 2003 and 2012, in Milano, Italy. The starting point of the research was established in the hypothesis that technics have tertiarised memory (Stiegler B., 1994), that knowledge is always founded on an ontological pessimism (Queneau R., 1933, Lyotard F., 1979) and on a perpetual process of the generation of meaning (Gadda C., 1923-29, Foucault M., 1966). Knowledge is always and inevitably linked to the technics with which it is passed on. Pedagogy becomes a questioning of the object of knowledge, which transmutes into a definition of the ways it can be visualised. This research then, setting out from a pessimistic position in relation to knowledge and truth, amplifies them to infinite possible forms and therefore causes a dual shift of philosophy towards art and of pedagogy towards hermeneutics. The methodology consisted of a textual and visual description of a territory in a cartography of meaning, seen as the relation between intuition and the way in which practices as knowledges, arts, form remnants

    Power allocation in cell-free massive MIMO:Using deep learning methods

    Get PDF

    Power allocation in cell-free massive MIMO:Using deep learning methods

    Get PDF
    • …
    corecore