325 research outputs found

    Using SCXML to integrate semantic sensor information into context-aware user interfaces

    Get PDF
    This paper describes a novel architecture to introduce automatic annotation and processing of semantic sensor data within context-aware applications. Based on the well-known state-charts technologies, and represented using W3C SCXML language combined with Semantic Web technologies, our architecture is able to provide enriched higher-level semantic representations of user’s context. This capability to detect and model relevant user situations allows a seamless modeling of the actual interaction situation, which can be integrated during the design of multimodal user interfaces (also based on SCXML) for them to be adequately adapted. Therefore, the final result of this contribution can be described as a flexible context-aware SCXML-based architecture, suitable for both designing a wide range of multimodal context-aware user interfaces, and implementing the automatic enrichment of sensor data, making it available to the entire Semantic Sensor We

    Transforming meteorological data into linked data

    Get PDF
    This paper describes the process followed in order to make some of the public meterological data from the Agencia Estatal de Meteorología (AEMET, Spanish Meteorological Office) available as Linked Data. The method followed has been already used to publish geographical, statistical, and leisure data. The data selected for publication are generated every ten minutes by the 250 automatic stations that belong to AEMET and that are deployed across Spain. These data are available as spreadsheets in the AEMET data catalog, and contain more than twenty types of measurements per station. Spreadsheets are retrieved from the website, processed with Python scripts, transformed to RDF according to an ontology network about meteorology that reuses the W3C SSN Ontology, published in a triple store and visualized in maps with Map4rdf

    Transforming Meteorological Data into Linked Data

    Get PDF
    We describe the AEMET meteorological dataset, which makes available some data sources from the Agencia Estatal de Meteorología (AEMET, Spanish Meteorological Office) as Linked Data. The data selected for publication are generated every ten minutes by approximately 250 automatic weather stations deployed across Spain and made available as CSV files in the AEMET FTP server. These files are retrieved from the server, processed with Python scripts, transformed to RDF according to an ontology network (which reuses the W3C SSN Ontology), published in a triple store and visualized using Map4RDF.This work has been supported by the Spanish project myBigData (TIN2010-17060)

    A Data Annotation Architecture for Semantic Applications in Virtualized Wireless Sensor Networks

    Full text link
    Wireless Sensor Networks (WSNs) have become very popular and are being used in many application domains (e.g. smart cities, security, gaming and agriculture). Virtualized WSNs allow the same WSN to be shared by multiple applications. Semantic applications are situation-aware and can potentially play a critical role in virtualized WSNs. However, provisioning them in such settings remains a challenge. The key reason is that semantic applications provisioning mandates data annotation. Unfortunately it is no easy task to annotate data collected in virtualized WSNs. This paper proposes a data annotation architecture for semantic applications in virtualized heterogeneous WSNs. The architecture uses overlays as the cornerstone, and we have built a prototype in the cloud environment using Google App Engine. The early performance measurements are also presented.Comment: This paper has been accepted for presentation in main technical session of 14th IFIP/IEEE Symposium on Integrated Network and Service Management (IM 2015) to be held on 11-15 May, 2015, Ottawa, Canad

    Survey on Quality of Observation within Sensor Web Systems

    Get PDF
    The Sensor Web vision refers to the addition of a middleware layer between sensors and applications. To bridge the gap between these two layers, Sensor Web systems must deal with heterogeneous sources, which produce heterogeneous observations of disparate quality. Managing such diversity at the application level can be complex and requires high levels of expertise from application developers. Moreover, as an information-centric system, any Sensor Web should provide support for Quality of Observation (QoO) requirements. In practice, however, only few Sensor Webs provide satisfying QoO support and are able to deliver high-quality observations to end consumers in a specific manner. This survey aims to study why and how observation quality should be addressed in Sensor Webs. It proposes three original contributions. First, it provides important insights into quality dimensions and proposes to use the QoO notion to deal with information quality within Sensor Webs. Second, it proposes a QoO-oriented review of 29 Sensor Web solutions developed between 2003 and 2016, as well as a custom taxonomy to characterise some of their features from a QoO perspective. Finally, it draws four major requirements required to build future adaptive and QoO-aware Sensor Web solutions

    Interoperability in IoT through the semantic profiling of objects

    Get PDF
    The emergence of smarter and broader people-oriented IoT applications and services requires interoperability at both data and knowledge levels. However, although some semantic IoT architectures have been proposed, achieving a high degree of interoperability requires dealing with a sea of non-integrated data, scattered across vertical silos. Also, these architectures do not fit into the machine-to-machine requirements, as data annotation has no knowledge on object interactions behind arriving data. This paper presents a vision of how to overcome these issues. More specifically, the semantic profiling of objects, through CoRE related standards, is envisaged as the key for data integration, allowing more powerful data annotation, validation, and reasoning. These are the key blocks for the development of intelligent applications.Portuguese Science and Technology Foundation (FCT) [UID/MULTI/00631/2013

    Semantic segmentation of real-time sensor data stream for complex activity recognition

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.Data segmentation plays a critical role in performing human activity recognition in the ambient assistant living systems. It is particularly important for complex activity recognition when the events occur in short bursts with attributes of multiple sub-tasks. Although substantial efforts have been made in segmenting the real-time sensor data stream such as static/dynamic window sizing approaches, little has been explored to exploit object semantic for discerning sensor data into multiple threads of activity of daily living. This paper proposes a semantic-based approach for segmenting sensor data series using ontologies to perform terminology box and assertion box reasoning, along with logical rules to infer whether the incoming sensor event is related to a given sequences of the activity. The proposed approach is illustrated using a use-case scenario which conducts semantic segmentation of a real-time sensor data stream to recognise an elderly persons complex activities

    Sensor Search Techniques for Sensing as a Service Architecture for The Internet of Things

    Get PDF
    The Internet of Things (IoT) is part of the Internet of the future and will comprise billions of intelligent communicating "things" or Internet Connected Objects (ICO) which will have sensing, actuating, and data processing capabilities. Each ICO will have one or more embedded sensors that will capture potentially enormous amounts of data. The sensors and related data streams can be clustered physically or virtually, which raises the challenge of searching and selecting the right sensors for a query in an efficient and effective way. This paper proposes a context-aware sensor search, selection and ranking model, called CASSARAM, to address the challenge of efficiently selecting a subset of relevant sensors out of a large set of sensors with similar functionality and capabilities. CASSARAM takes into account user preferences and considers a broad range of sensor characteristics, such as reliability, accuracy, location, battery life, and many more. The paper highlights the importance of sensor search, selection and ranking for the IoT, identifies important characteristics of both sensors and data capture processes, and discusses how semantic and quantitative reasoning can be combined together. This work also addresses challenges such as efficient distributed sensor search and relational-expression based filtering. CASSARAM testing and performance evaluation results are presented and discussed.Comment: IEEE sensors Journal, 2013. arXiv admin note: text overlap with arXiv:1303.244

    EAGLE—A Scalable Query Processing Engine for Linked Sensor Data

    Get PDF
    Recently, many approaches have been proposed to manage sensor data using semantic web technologies for effective heterogeneous data integration. However, our empirical observations revealed that these solutions primarily focused on semantic relationships and unfortunately paid less attention to spatio–temporal correlations. Most semantic approaches do not have spatio–temporal support. Some of them have attempted to provide full spatio–temporal support, but have poor performance for complex spatio–temporal aggregate queries. In addition, while the volume of sensor data is rapidly growing, the challenge of querying and managing the massive volumes of data generated by sensing devices still remains unsolved. In this article, we introduce EAGLE, a spatio–temporal query engine for querying sensor data based on the linked data model. The ultimate goal of EAGLE is to provide an elastic and scalable system which allows fast searching and analysis with respect to the relationships of space, time and semantics in sensor data. We also extend SPARQL with a set of new query operators in order to support spatio–temporal computing in the linked sensor data context.EC/H2020/732679/EU/ACTivating InnoVative IoT smart living environments for AGEing well/ACTIVAGEEC/H2020/661180/EU/A Scalable and Elastic Platform for Near-Realtime Analytics for The Graph of Everything/SMARTE

    Enabling Ontology-based data access to streaming sources

    Full text link
    The availability of streaming data sources is progressively increasing thanks to the development of ubiquitous data capturing tech- nologies such as sensor networks. The heterogeneity of these sources in- troduces the requirement of providing data access in a uni ed and co- herent manner, whilst allowing the user to express their needs at an ontological level. In this paper we describe an ontology-based streaming data access service. Sources link their data content to ontologies through s2o mappings. Users can query the ontology using sparqlStream, an ex- tension of sparql for streaming data. A preliminary implementation of the approach is also presented. With this proposal we expect to set the basis for future e orts in ontology-based streaming data integration
    corecore