5 research outputs found

    Fixed Points and Noetherian Topologies

    Full text link
    This paper provides a canonical construction of a Noetherian least fixed point topology. While such least fixed point are not Noetherian in general, we prove that under a mild assumption, one can use a topological minimal bad sequence argument to prove that they are. We then apply this fixed point theorem to rebuild known Noetherian topologies with a uniform proof. In the case of spaces that are defined inductively (such as finite words and finite trees), we provide a uniform definition of a divisibility topology using our fixed point theorem. We then prove that the divisibility topology is a generalisation of the divisibility preorder introduced by Hasegawa in the case of well-quasi-orders.Comment: 18 pages, 2 figure

    Well Quasi-Orders in Computer Science (Dagstuhl Seminar 16031)

    No full text
    This report documents the program and the outcomes of Dagstuhl Seminar 16031 "Well Quasi-Orders in Computer Science", the first seminar devoted to the multiple and deep interactions between the theory of Well quasi-orders (known as the Wqo-Theory) and several fields of Computer Science (Verification and Termination of Infinite-State Systems, Automata and Formal Languages, Term Rewriting and Proof Theory, topological complexity of computational problems on continuous functions). Wqo-Theory is a highly developed part of Combinatorics with ever-growing number of applications in Mathematics and Computer Science, and Well quasi-orders are going to become an important unifying concept of Theoretical Computer Science. In this seminar, we brought together several communities from Computer Science and Mathematics in order to facilitate the knowledge transfer between Mathematicians and Computer Scientists as well as between established and younger researchers and thus to push forward the interaction between Wqo-Theory and Computer Science

    Structural and Topological Graph Theory and Well-Quasi-Ordering

    Get PDF
    Στη σειρά εργασιών Ελασσόνων Γραφημάτων, οι Neil Robertson και Paul Seymour μεταξύ άλλων σπουδαίων αποτελεσμάτων, απέδειξαν την εικασία του Wagner που σήμερα είναι γνωστή ως το Θεώρημα των Robertson και Seymour. Σε κάθε τους βήμα προς την συναγωγή της τελικής απόδειξης της εικασίας, κάθε ειδική περίπτωση αυτής που αποδείκνυαν ήταν συνέπεια ενός "δομικού θεωρήματος" το οποίο σε γενικές γραμμές ισχυριζόταν ότι ικανοποιητικά γενικά γραφήματα περιέχουν ως ελάσσονα γραφήματα ή άλλες δομές που είναι χρήσιμα για την απόδειξη, ή ισοδύναμα, ότι η δομή των γραφημάτων τα οποία δεν περιέχουν ένα χρήσιμο για την απόδειξη γράφημα ως έλασσον είναι κατά κάποιο τρόπο περιορισμένη συνάγοντας έτσι και πάλι μια χρήσιμη πληροφορία για την απόδειξη. Στην παρούσα εργασία, παρουσιάζουμε -σχετικά μικρές- αποδείξεις διαφόρων ειδικών περιπτώσεων του Θεωρήματος των Robertson και Seymour, αναδεικνύοντας με αυτό τον τρόπο την αλληλεπίδραση της δομικής θεωρίας γραφημάτων με την θεωρία των καλών-σχεδόν-διατάξεων. Παρουσιάζουμε ακόμα την ίσως πιο ενδιαφέρουσα ειδική περίπτωση του Θεωρήματος των Robertson και Seymour, η οποία ισχυρίζεται ότι η εμβαπτισιμότητα σε κάθε συγκεκριμένη επιφάνεια δύναται να χαρακτηριστεί μέσω της απαγόρευσης πεπερασμένων το πλήθος γραφημάτων ως ελάσσονα. Το τελευταίο αποτέλεσμα συνάγεται ως ένα αποτέλεσμα της θεωρίας των καλών-σχεδόν-διατάξεων αναδεικνύοντας με αυτό τον τρόπο την αλληλεπίδρασή της με την τοπολογική θεωρία γραφημάτων. Τέλος, σταχυολογούμε αποτελέσματα αναφορικά με την καλή-σχεδόν-διάταξη κλάσεων γραφημάτων από άλλες -πέραν της σχέσης έλασσον- σχέσεις γραφημάτων.In their Graph Minors series, Neil Robertson and Paul Seymour among other great results proved Wagner's conjecture which is today known as the Robertson and Seymour's theorem. In every step along their way to the final proof, each special case of the conjecture which they were proving was a consequence of a "structure theorem", that sufficiently general graphs contain minors or other sub-objects that are useful for the proof - or equivalently, that graphs that do not contain a useful minor have a certain restricted structure, deducing that way also a useful information for the proof. The main object of this thesis is the presentation of -relatively short- proofs of several Robertson and Seymour's theorem's special cases, illustrating by this way the interplay between structural graph theory and graphs' well-quasi-ordering. We present also the proof of the perhaps most important special case of the Robertson and Seymour's theorem which states that embeddability in any fixed surface can be characterized by forbidding finitely many minors. The later result is deduced as a well-quasi-ordering result, indicating by this way the interplay among topological graph theory and well-quasi-ordering theory. Finally, we survey results regarding the well-quasi-ordering of graphs by other than the minor graphs' relations
    corecore