1,793 research outputs found

    Advancing Alternative Analysis: Integration of Decision Science.

    Get PDF
    Decision analysis-a systematic approach to solving complex problems-offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals.Assess whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics.A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups' findings.We conclude the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients, and would also advance the science of decision analysis.We advance four recommendations: (1) engaging the systematic development and evaluation of decision approaches and tools; (2) using case studies to advance the integration of decision analysis into alternatives analysis; (3) supporting transdisciplinary research; and (4) supporting education and outreach efforts

    The Multiobjective Average Network Flow Problem: Formulations, Algorithms, Heuristics, and Complexity

    Get PDF
    Integrating value focused thinking with the shortest path problem results in a unique formulation called the multiobjective average shortest path problem. We prove this is NP-complete for general graphs. For directed acyclic graphs, an efficient algorithm and even faster heuristic are proposed. While the worst case error of the heuristic is proven unbounded, its average performance on random graphs is within 3% of the optimal solution. Additionally, a special case of the more general biobjective average shortest path problem is given, allowing tradeoffs between decreases in arc set cardinality and increases in multiobjective value; the algorithm to solve the average shortest path problem provides all the information needed to solve this more difficult biobjective problem. These concepts are then extended to the minimum cost flow problem creating a new formulation we name the multiobjective average minimum cost flow. This problem is proven NP-complete as well. For directed acyclic graphs, two efficient heuristics are developed, and although we prove the error of any successive average shortest path heuristic is in theory unbounded, they both perform very well on random graphs. Furthermore, we define a general biobjective average minimum cost flow problem. The information from the heuristics can be used to estimate the efficient frontier in a special case of this problem trading off total flow and multiobjective value. Finally, several variants of these two problems are discussed. Proofs are conjectured showing the conditions under which the problems are solvable in polynomial time and when they remain NP-complete

    Multicriteria-based methodology for the design of rural electrification systems. A case study in Nigeria

    Get PDF
    Electrification with micro-grids is receiving increasing attention to electrify rural areas in developing countries. However, determining the best local supply solution is a complex problem that requires considering different generation technologies (i.e. solar PV, wind or diesel) and different system configurations (off-grid or on-grid). Most existing decision aid tools to assess this design only consider economical and technical issues in a single optimization process. However, social and environmental considerations have been proven key issues to ensure long-term sustainability of the projects. In this context, the objective of this work is to develop a multicriteria procedure to allow comparing electrification designs with on-grid or isolated micro-grids and different tech-nologies considering multiple aspects. This multicriteria procedure is integrated in a two-phased methodology to assist the design of the system to electrification promoters in a structured process. First, different electrification alternatives are generated with an open-source techno-economic optimization model; next, these alternatives are evaluated and ranked with the multicriteria procedure, which considers 12 criteria representing economic, technical, socio-institutional and environmental aspects. The whole design methodology is validated with a real case study of 26 population settlements in Plateau State, Nigeria. Experts in rural electrification within the Nigerian context have been consulted to weight the criteria and particularize their evaluation for the specific case study. Results show that solar PV technology based systems are the most suitable electrification designs for communities in Nigeria, while grid connection feasibility depends on the size of the community and the distance to the closest national grid consumption point.Peer ReviewedPostprint (author's final draft

    Advancing Alternative Analysis: Integration of Decision Science

    Get PDF
    abstract: BACKGROUND: Decision analysis—a systematic approach to solving complex problems—offers tools and frameworks to support decision making that are increasingly being applied to environmental challenges. Alternatives analysis is a method used in regulation and product design to identify, compare, and evaluate the safety and viability of potential substitutes for hazardous chemicals. OBJECTIVES: We assessed whether decision science may assist the alternatives analysis decision maker in comparing alternatives across a range of metrics. METHODS: A workshop was convened that included representatives from government, academia, business, and civil society and included experts in toxicology, decision science, alternatives assessment, engineering, and law and policy. Participants were divided into two groups and were prompted with targeted questions. Throughout the workshop, the groups periodically came together in plenary sessions to reflect on other groups’ findings. RESULTS: We concluded that the further incorporation of decision science into alternatives analysis would advance the ability of companies and regulators to select alternatives to harmful ingredients and would also advance the science of decision analysis. CONCLUSIONS: We advance four recommendations: a) engaging the systematic development and evaluation of decision approaches and tools; b) using case studies to advance the integration of decision analysis into alternatives analysis; c) supporting transdisciplinary research; and d) supporting education and outreach efforts.Reproduced with permission from Environmental Health Perspectives. Article as published can be found here: https://ehp.niehs.nih.gov/EHP483/#tab

    Telecommunications Network Planning and Maintenance

    Get PDF
    Telecommunications network operators are on a constant challenge to provide new services which require ubiquitous broadband access. In an attempt to do so, they are faced with many problems such as the network coverage or providing the guaranteed Quality of Service (QoS). Network planning is a multi-objective optimization problem which involves clustering the area of interest by minimizing a cost function which includes relevant parameters, such as installation cost, distance between user and base station, supported traffic, quality of received signal, etc. On the other hand, service assurance deals with the disorders that occur in hardware or software of the managed network. This paper presents a large number of multicriteria techniques that have been developed to deal with different kinds of problems regarding network planning and service assurance. The state of the art presented will help the reader to develop a broader understanding of the problems in the domain

    A systematic review on multi-criteria group decision-making methods based on weights: analysis and classification scheme

    Get PDF
    Interest in group decision-making (GDM) has been increasing prominently over the last decade. Access to global databases, sophisticated sensors which can obtain multiple inputs or complex problems requiring opinions from several experts have driven interest in data aggregation. Consequently, the field has been widely studied from several viewpoints and multiple approaches have been proposed. Nevertheless, there is a lack of general framework. Moreover, this problem is exacerbated in the case of experts’ weighting methods, one of the most widely-used techniques to deal with multiple source aggregation. This lack of general classification scheme, or a guide to assist expert knowledge, leads to ambiguity or misreading for readers, who may be overwhelmed by the large amount of unclassified information currently available. To invert this situation, a general GDM framework is presented which divides and classifies all data aggregation techniques, focusing on and expanding the classification of experts’ weighting methods in terms of analysis type by carrying out an in-depth literature review. Results are not only classified but analysed and discussed regarding multiple characteristics, such as MCDMs in which they are applied, type of data used, ideal solutions considered or when they are applied. Furthermore, general requirements supplement this analysis such as initial influence, or component division considerations. As a result, this paper provides not only a general classification scheme and a detailed analysis of experts’ weighting methods but also a road map for researchers working on GDM topics or a guide for experts who use these methods. Furthermore, six significant contributions for future research pathways are provided in the conclusions.The first author acknowledges support from the Spanish Ministry of Universities [grant number FPU18/01471]. The second and third author wish to recognize their support from the Serra Hunter program. Finally, this work was supported by the Catalan agency AGAUR through its research group support program (2017SGR00227). This research is part of the R&D project IAQ4EDU, reference no. PID2020-117366RB-I00, funded by MCIN/AEI/10.13039/ 501100011033.Peer ReviewedPostprint (published version

    Strategic Planning Based on Sustainability for Urban Transportation: An Application to Decision-Making

    Get PDF
    Hamurcu, Mustafa/0000-0002-6166-3946; Eren, Tamer/0000-0001-5282-3138WOS:000537476200088Public transportation is one of the main goals of a developing city. This topic includes not only administrators, but also city residents and the environment, with economic, environmental, and social factors. This paper presents a multicriteria decision-making process for prioritizing alternative public transportation projects in Krkkale, considering the urban type of a developing city. It outlines three planned projects for improvement: "electric municipality bus", "light rail system", and the "modernization of existing vehicles and network optimization". In this study, we use the analytic hierarchy process and fuzzy technique for order preference by similarity to ideal situation (TOPSIS) application to prioritize transportation projects using economic, social, transportation, and environmental sub-criteria. The aim of this study is to select the most suitable project, based on sustainability, for more urban livability in Krkkale city. In the strategic decision-making process, the weights of each sustainability criteria have been determined using analytic hierarchy process (AHP). The fuzzy TOPSIS method has been applied for ranking the proposed alternative projects for Krkkale. Finally, the analytic decision process results are compared, and the electric municipality bus is selected as the best project alternative. The results of this study can not only offer a solution for current needs related to urban planning, but also ensure as a more transparent decision-making process for developing sustainability in developing cities in the near future

    Geosimulation and Multicriteria Modelling of Residential Land Development in the City of Tehran: A Comparative Analysis of Global and Local Models

    Get PDF
    Conventional models for simulating land-use patterns are insufficient in addressing complex dynamics of urban systems. A new generation of urban models, inspired by research on cellular automata and multi-agent systems, has been proposed to address the drawbacks of conventional modelling. This new generation of urban models is called geosimulation. Geosimulation attempts to model macro-scale patterns using micro-scale urban entities such as vehicles, homeowners, and households. The urban entities are represented by agents in the geosimulation modelling. Each type of agents has different preferences and priorities and shows different behaviours. In the land-use modelling context, the behaviour of agents is their ability to evaluate the suitability of parcels of land using a number of factors (criteria and constraints), and choose the best land(s) for a specific purpose. Multicriteria analysis provides a set of methods and procedures that can be used in the geosimulation modelling to describe the behaviours of agents. There are three main objectives of this research. First, a framework for integrating multicriteria models into geosimulation procedures is developed to simulate residential development in the City of Tehran. Specifically, the local form of multicriteria models is used as a method for modelling agents’ behaviours. Second, the framework is tested in the context of residential land development in Tehran between 1996 and 2006. The empirical research is focused on identifying the spatial patterns of land suitability for residential development taking into account the preferences of three groups of actors (agents): households, developers, and local authorities. Third, a comparative analysis of the results of the geosimulation-multicriteria models is performed. A number of global and local geosimulation-multicriteria models (scenarios) of residential development in Tehran are defined and then the results obtained by the scenarios are evaluated and examined. The output of each geosimulation-multicriteria model is compared to the results of other models and to the actual pattern of land-use in Tehran. The analysis is focused on comparing the results of the local and global geosimulation-multicriteria models. Accuracy measures and spatial metrics are used in the comparative analysis. The results suggest that, in general, the local geosimulation-multicriteria models perform better than the global methods
    corecore