112 research outputs found

    Reconfiguration in bounded bandwidth and treedepth

    Full text link
    We show that several reconfiguration problems known to be PSPACE-complete remain so even when limited to graphs of bounded bandwidth. The essential step is noticing the similarity to very limited string rewriting systems, whose ability to directly simulate Turing Machines is classically known. This resolves a question posed open in [Bonsma P., 2012]. On the other hand, we show that a large class of reconfiguration problems becomes tractable on graphs of bounded treedepth, and that this result is in some sense tight.Comment: 14 page

    High-dimensional learning of linear causal networks via inverse covariance estimation

    Get PDF
    We establish a new framework for statistical estimation of directed acyclic graphs (DAGs) when data are generated from a linear, possibly non-Gaussian structural equation model. Our framework consists of two parts: (1) inferring the moralized graph from the support of the inverse covariance matrix; and (2) selecting the best-scoring graph amongst DAGs that are consistent with the moralized graph. We show that when the error variances are known or estimated to close enough precision, the true DAG is the unique minimizer of the score computed using the reweighted squared l_2-loss. Our population-level results have implications for the identifiability of linear SEMs when the error covariances are specified up to a constant multiple. On the statistical side, we establish rigorous conditions for high-dimensional consistency of our two-part algorithm, defined in terms of a "gap" between the true DAG and the next best candidate. Finally, we demonstrate that dynamic programming may be used to select the optimal DAG in linear time when the treewidth of the moralized graph is bounded.Comment: 41 pages, 7 figure

    Degree-Constrained Orientation of Maximum Satisfaction: Graph Classes and Parameterized Complexity

    Get PDF
    The problem Max W-Light (Max W-Heavy) for an undirected graph is to assign a direction to each edge so that the number of vertices of outdegree at most W (resp. at least W) is maximized. It is known that these problems are NP-hard even for fixed W. For example, Max 0-Light is equivalent to the problem of finding a maximum independent set. In this paper, we show that for any fixed constant W, Max W-Heavy can be solved in linear time for hereditary graph classes for which treewidth is bounded by a function of degeneracy. We show that such graph classes include chordal graphs, circular-arc graphs, d-trapezoid graphs, chordal bipartite graphs, and graphs of bounded clique-width. To have a polynomial-time algorithm for Max W-Light, we need an additional condition of a polynomial upper bound on the number of potential maximal cliques to apply the metatheorem by Fomin, Todinca, and Villanger [SIAM J. Comput., 44(1):57-87, 2015]. The aforementioned graph classes, except bounded clique-width graphs, satisfy such a condition. For graphs of bounded clique-width, we present a dynamic programming approach not using the metatheorem to show that it is actually polynomial-time solvable for this graph class too. We also study the parameterized complexity of the problems and show some tractability and intractability results

    Grad and Classes with Bounded Expansion II. Algorithmic Aspects

    Full text link
    Classes of graphs with bounded expansion are a generalization of both proper minor closed classes and degree bounded classes. Such classes are based on a new invariant, the greatest reduced average density (grad) of G with rank r, ∇r(G). These classes are also characterized by the existence of several partition results such as the existence of low tree-width and low tree-depth colorings. These results lead to several new linear time algorithms, such as an algorithm for counting all the isomorphs of a fixed graph in an input graph or an algorithm for checking whether there exists a subset of vertices of a priori bounded size such that the subgraph induced by this subset satisfies some arbirtrary but fixed first order sentence. We also show that for fixed p, computing the distances between two vertices up to distance p may be performed in constant time per query after a linear time preprocessing. We also show, extending several earlier results, that a class of graphs has sublinear separators if it has sub-exponential expansion. This result result is best possible in general

    Pliability and approximating max-CSPs

    Get PDF
    We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time algorithm for an arbitrarily good approximation of the optimal value in a large class of Max-2-CSPs parameterised by the class of allowed constraint graphs (with arbitrary constraints on an unbounded alphabet). Our result applies more generally to the maximum homomorphism problem between two rational-valued structures. The condition unifies the two main approaches for designing a polynomial-time approximation scheme. One is Baker’s layering technique, which applies to sparse graphs such as planar or excluded-minor graphs. The other is based on Szemer´edi’s regularity lemma and applies to dense graphs. We extend the applicability of both techniques to new classes of Max-CSPs. On the other hand, we prove that the condition cannot be used to find solutions (as opposed to approximating the optimal value) in general. Treewidth-pliability turns out to be a robust notion that can be defined in several equivalent ways, including characterisations via size, treedepth, or the Hadwiger number. We show connections to the notions of fractional-treewidth-fragility from structural graph theory, hyperfiniteness from the area of property testing, and regularity partitions from the theory of dense graph limits. These may be of independent interest. In particular we show that a monotone class of graphs is hyperfinite if and only if it is fractionallytreewidth-fragile and has bounded degree
    • …
    corecore