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Abstract

We identify a sufficient condition, treewidth-pliability, that gives a polynomial-time
algorithm for an arbitrarily good approximation of the optimal value in a large class of
Max-2-CSPs parameterised by the class of allowed constraint graphs (with arbitrary con-
straints on an unbounded alphabet). Our result applies more generally to the maximum
homomorphism problem between two rational-valued structures.

The condition unifies the two main approaches for designing a polynomial-time ap-
proximation scheme. One is Baker’s layering technique, which applies to sparse graphs
such as planar or excluded-minor graphs. The other is based on Szemerédi’s regularity
lemma and applies to dense graphs. We extend the applicability of both techniques to
new classes of Max-CSPs. On the other hand, we prove that the condition cannot be used
to find solutions (as opposed to approximating the optimal value) in general.

Treewidth-pliability turns out to be a robust notion that can be defined in several
equivalent ways, including characterisations via size, treedepth, or the Hadwiger number.
We show connections to the notions of fractional-treewidth-fragility from structural graph
theory, hyperfiniteness from the area of property testing, and regularity partitions from
the theory of dense graph limits. These may be of independent interest. In particular
we show that a monotone class of graphs is hyperfinite if and only if it is fractionally-
treewidth-fragile and has bounded degree.

1 Introduction

The problem of finding a maximum cut in a graph (Max-Cut) is one of the most studied prob-
lems from Karp’s original list of 21 NP-complete problems [56]. While Max-Cut is NP-hard

∗An extended abstract of this work appeared in the Proceedings of SODA’21 [80]. Work done while Miguel
Romero and Marcin Wrochna were at the University of Oxford. Stanislav Živný was supported by a Royal
Society University Research Fellowship. This project has received funding from the European Research Council
(ERC) under the European Union’s Horizon 2020 research and innovation programme (grant agreement No
714532). The paper reflects only the authors’ views and not the views of the ERC or the European Commission.
The European Union is not liable for any use that may be made of the information contained therein. This
work was also supported by UKRI EP/X024431/1. For the purpose of Open Access, the authors have applied
a CC BY public copyright licence to any Author Accepted Manuscript version arising from this submission.
All data is provided in full in the results section of this paper.

1

http://arxiv.org/abs/1911.03204v4


to solve optimally, there is a trivial 0.5-approximation algorithm [81] and the celebrated 0.878-
approximation algorithm of Goemans and Williamson [42]. Papadimitriou and Yannakakis
established that Max-Cut is Max-SNP-hard [77]. By the work of Arora, Lund, Motwani,
Sudan, and Szegedy [5] this implies that, unless P=NP, there is no polynomial-time approx-
imation scheme (PTAS) for Max-Cut in general graphs. However, non-trivial results exist
for important special cases. On the one hand, Max-Cut is solvable exactly in planar graphs,
as shown by Hadlock [50], and more generally, Max-Cut admits a PTAS on graph classes
excluding a fixed minor, as shown by Demaine, Hajiaghayi, and Kawarabayashi [23]. On the
other hand, Arora, Karger, and Karpinski showed a PTAS for Max-Cut in dense graphs [4],
where a graph class is dense if every graph in it contains at least a constant fraction of all
possible edges.

Max-Cut is an example of maximum constraint satisfaction problem (Max-CSP), although
a very special one (the alphabet size is 2, in particular constant, and every constraint uses the
same symmetric predicate “x 6= y” of arity 2). Another well-known example is Max-r-SAT,
with alphabet size 2 and r-ary clauses. Motivated by results on planar, excluded-minor, and
dense graph classes, our goal in this paper is to understand the following question:

What structure allows for the existence of a PTAS for Max-CSPs?

We adopt a permissive definition of PTAS here: given a Max-CSP instance and an arbi-
trarily small ε > 0, the goal is to find a (1 − ε) multiplicative approximation of the value of
an optimal solution to the instance (but, unlike in most papers, we do not require that the
algorithm should find a solution achieving the bound).

We focus on two computational problems. First, we study the general Max-2-CSP(G)
problem parameterised by the class of underlying constraint graphs (a.k.a. primal or Gaifman
graphs). The input is a graph G ∈ G, an alphabet Σv for each vertex, and a valued constraint
fuv : Σu×Σv → Q≥0 for each edge uv. The goal is to find an assignment h(v) ∈ Σv maximising
∑

uv fuv(h(u), h(v)). Similarly, in Max-r-CSP(G) a constraint may appear on any r-clique in
G. The constraints are arbitrary (non-negative) and the alphabets are not fixed, making the
problem very expressive.1

Second, we consider a more general framework called the maximum homomorphism prob-
lem (Max-Hom) of computing the maximum value of any map between two given Q≥0-valued
structures A and B; the value will be denoted by opt(A,B) (see Section 2 for precise defi-
nitions). Intuitively, the left-hand-side structure describes the (weighted) scopes of the con-
straints and the right-hand-side structure describes the different types of constraints. Fol-
lowing Grohe’s notation [47], for a class of structures A we denote by Max-Hom(A,−) the
restriction of Max-Hom to instances (A,B) with A ∈ A and B arbitrary. This framework cap-

tures the Max-r-CSP(G) problem as a particular case: it is equivalent to Max-Hom(A(r)
G ,−),

where by A(r)
G we denote the class of all valued structures with an underlying graph in G and

arity r. Another example is the case of graph Max-CSP, by which we mean a Max-2-CSP
that uses the same symmetric predicate in all constraints (as in Max-Cut or Max-q-Cut); this
case is equivalent to Max-Hom(A,−) where the structures in A are graphs.

1One could attempt to generalise counting problems by maximising
∏

uv fuv(h(u), h(v)) instead, or equiv-
alently its logarithm

∑
uv log fuv(h(u), h(v)). However, the requirement fuv ≥ 0 and the approximation ratio

change. This changes the complexity: for example, approximating the number of 3-colourings requires deciding
whether there is at least one in polynomial time, which is NP-hard already in 4-regular planar graphs [15].
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The question of what structure allows to solve Max-CSPs exactly in polynomial time
is well understood. A standard dynamic approach works for Max-r-CSP(G) when G is a
class of graphs of bounded treewidth. Grohe, Schwentick, and Segoufin [48] in fact proved
the converse: if G has unbounded treewidth then Max-r-CSP(G), in fact already deciding
the existence of a solution satisfying all constraints, cannot be solved in polynomial time
(assuming FPT 6=W[1]). Grohe’s theorem [47] then extended it to the more general framework:
for a class of relational (or {0, 1}-valued) structures A of bounded arity, the decision problem
Hom(A,−) can be solved in polynomial time if and only if the cores of structures in A
have bounded treewidth. (The core is the smallest homomorphically equivalent substructure;
for example, bipartite graphs all have the single edge graph K2 as a core, so Hom(A,−) is
easy when A is a class of bipartite graphs). This was recently extended further to exact
optimisation with valued structures by Carbonnel, Romero, and Živný [11].

Max-r-CSPs do not admit a PTAS in general, since already Max-Cut does not. On the
other hand, the techniques that give PTASes for Max-Cut on sparse and dense graphs apply
more generally (in fact to a variety of problems beyond Max-CSPs). Our main contribution is
a unifying condition, treewidth-pliability, that captures all known PTASes for Max-r-CSP(G)
and Max-Hom(A,−) problems.

We call a class of structures A tw-pliable if it is uniformly close to structures of bounded
treewidth. More formally, for any ε > 0 there is a k = k(ε) such that every structure in A
has an ε-close structure with treewidth at most k. Here we consider two structures A and B

to be ε-close if opt(A,C) is ε-close to opt(B,C) for all C (details in Section 2.3; this notion of
distance, which we also characterise combinatorially, may be of independent interest). While
the structure of bounded treewidth is not known and cannot be efficiently computed, we show
that the Sherali-Adams LP relaxation gives a PTAS for Max-Hom(A,−).

Theorem 1.1. If A is a tw-pliable class of structures of bounded arity, then Max-Hom(A,−)
admits a PTAS.

We emphasise the generality of Theorem 1.1.2 Firstly, the computational problem (Max-Hom)
captures many fundamental problems, including graph homomorphisms [52], Max-Cut, Max-
DiCut, Max-SAT, Max-CSPs, and query related problems coming from database theory [47].
Secondly, the notion of pliability captures many previously discovered cases of structures that
admit a PTAS. In particular, we now discuss how Theorem 1.1 extends the applicability of
the two main approaches for obtaining PTASes.

1.1 Sparse structures: Baker’s technique and fragility

Perhaps the best known technique for solving problems on planar graphs is Lipton and Tar-
jan’s planar separator theorem [63] and the divide & conquer approach it enables [64]. It can
be used to give a PTAS for Max-CSPs with fixed alphabet size on planar graphs (this extends
to excluded-minor graphs [2] and more [35]) of bounded degree.

This approach was superseded by Baker’s technique [6], which provides better running
times and is easily applied to general Max-r-CSPs on arbitrary planar graphs (see e.g. [57]).
The idea is very elegant: we partition a planar graph into Breadth-First-Search layers, remove
every ℓ-th layer, and show that the remaining components of ℓ − 1 consecutive layers have
bounded treewidth (and so can be solved exactly). By trying different starting layers we can

2However, the generality comes at a cost, as detailed in Section 1.3: while an approximate optimum can be
found, an approximate solution cannot be constructed unless P=NP.
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ensure that the removed layers intersect an unknown optimal solution at most O(1ℓ ) times,
giving a 1±O(1ℓ ) approximation.

From planar graphs this was extended to graphs of bounded genus by Eppstein [40] and
later to all graph classes excluding a fixed minor by Grohe [46] and Demaine et al. [23]. The
structural property needed for this approach, originally proved for excluded-minor graphs by
DeVos, Ding, Oporowski, Sanders, Reed, Seymour, and Vertigan [24], is tw-fragility : they can
be partitioned into any constant number of parts such that removing any one part leaves a
graph of bounded treewidth. As shown by Hunt, Marathe, and Stearns [70, 54] (see also [55])
as well as Grigoriev and Bodlaender [45], the same property applies to some geometrically-
defined graph classes that do not exclude any minor. One example is intersection graphs of
unit disks whose centers are at least some constant apart (capturing some applications of
the closely related shifting technique of Hochbaum and Maass [53] for geometric packing and
covering problems). Another example is 1-planar graphs, or more generally graphs drawn on
a fixed surface with a bounded number of intersections per edge.

An important generalisation, fractional-tw-fragility, was introduced by Dvořák [29]: it
suffices that the parts whose removal results in a graph of bounded treewidth are nearly-
disjoint (Definition 4.2). This applies to d-dimensional variants of the geometric classes
mentioned above (for any constant d), in particular to d-dimensional grids, which are not
tw-fragile [8]; this also includes classes of polynomial growth [60, 31]. Another large family
of fractionally-tw-fragile classes are classes of bounded degree with strongly sublinear sepa-
rators [29] (equivalently, bounded degree and polynomial expansion [35]). For such concrete
examples of fragile classes, known proofs show that the nearly-disjoint parts can be computed
efficiently. A PTAS can then easily be designed from the definition [29].

We show that the assumption about efficient construction is not needed. We do this by
proving that if G is any fractionally-tw-fragile class of graphs (intuitively, any class where

a Baker-like technique is known to work), then the class A(r)
G of all possible structures of

bounded arity r and with Gaifman graph in G is tw-pliable.

Theorem 1.2. Let G be a fractionally-tw-fragile class of graphs. Then A(r)
G is tw-pliable for

every r. Consequently, Max-r-CSP(G) admits a PTAS.

This captures all graph classes G where a PTAS for Max-r-CSP(G) is known.

1.2 Dense structures: the regularity lemma

It is perhaps more surprising that dense structures admit a PTAS. Here a class is dense if
a constant factor of all possible constraints is present in every structure in the class, e.g.
graphs with Ω(n2) edges. Arora, Karger, and Karpinski [4] showed that Max-r-CSPs admit
a PTAS in the dense regime if the alphabet size is constant (in fact Boolean); de la Vega [18]
independently gave a PTAS for dense Max-Cut. Frieze and Kannan [41] proved that these
results are essentially possible because of Szemerédi’s regularity lemma [85]: intuitively, every
graph can be approximated to within an additive ±εn2 error by a random graph (with a
constant number of parts, depending on ε only, so that the edges between two parts form a
uniformly random graph of some density). For dense graphs, the additive error translates to
a relative error, giving a PTAS. They also showed a variant of the regularity lemma that is
still applicable to Max-r-CSPs with constant alphabet size, yet avoids its infamous tower-type
dependency on ε.
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Goldreich, Goldwasser, and Ron [44] connected these results to the area of property test-
ing, spawning an entirely new direction of research. They gave constant-time algorithms
estimating the optimum value of some graph Max-CSPs. In fact, Alon, de la Vega, Kannan,
and Karpinski [1] (see also Andersson and Engebretsen [3]) showed that Max-r-CSPs with a
fixed alphabet can be approximated with accuracy ±εnr by sampling a constant number of
vertices (polynomial in 1

ε ) and finding the optimum on the resulting (constant-size) induced
substructure.

None of these results apply to any Max-r-CSP(G) and Max-Hom(A,−) problem, that
is, to unbounded alphabets. We give the first such example: undirected graphs with Ω(n2)
edges.

Theorem 1.3. Let c > 0 and let A be a class of graphs with at least cn2 edges. Then A is
tw-pliable. Consequently, Max-Hom(A,−) admits a PTAS.

(Note here the graphs in A are input structures, not just Gaifman graphs of input struc-
tures). We also show that this cannot be extended to general CSPs: already for the class of
tournaments—that is, orientations of complete graphs— a PTAS is impossible, (cf. Corol-
lary 8.5 in Section 8) and indeed, this class is not tw-pliable (cf. Remark 7.4).

1.3 Robustness of pliability

The notion of treewidth-pliability not only unifies the different existing algorithmic techniques
but it is also quite robust: treewidth-pliability captures a valued analogue of “homomorphic
equivalence” (e.g. bipartite graphs, or 3-colourable graphs where each edge is contained in
exactly one triangle, cf. Examples 2.14 and 2.15 in Section 2.5) as well as small edits: if A is
a pliable class of graphs, say, then the class of graphs obtained by adding or removing o(m)
edges from m-edge graphs in A is again pliable (Lemma 2.13 in Section 2.5). However, this
generality comes at a price. First, we show that even for fixed alphabet size, although the
approximate optimum value can be found, an approximate solution cannot be constructed
(unless P = NP, cf. Example 2.16 in Section 2.5). Second, unlike in some of the previous
results for more restricted classes, our result does not give an EPTAS (i.e., with the degree
of the polynomial time bound independent of ε) for fixed alphabet size (cf. Question 9.2).
Finally, the use of strong versions of the regularity lemma yields tower-type dependencies on
the approximation ratio ε in the dense case.

In the definition of treewidth-pliability we approximate structures by comparing their
opt() values and we ask them to be close to structures where the problem can be solved
exactly. This is a non-constructive and very general definition. In fact, it is not inconceivable
that this captures all tractable cases, i.e., that Max-Hom(A,−) has a PTAS if and only if A
is tw-pliable. Nevertheless, we show a variety of equivalent combinatorial definitions, which
allow us to place a fairly tight bound on what pliability is, structurally.

For classes of the form A(r)
G , that is, if we only restrict the underlying Gaifman graphs, we

show that pliability collapses to fractional fragility. In this sense we understand the “sparse”
setting exactly.

Lemma 1.4. Let G be a class of graphs. The following are equivalent, for any r ≥ 2:

• G is fractionally-tw-fragile;

• A(r)
G is tw-pliable.

5



In general, we can replace treewidth with other parameters of the Gaifman graph: size
(number of vertices), treedepth, denoted by td, Hadwiger number (maximum clique minor
size), or maximum connected component size, which we denote by cc.

Theorem 1.5. Let A be any class of structures. The following are equivalent:

• A is td-pliable; • A is tw-pliable; • A is Hadwiger-pliable.

If structures in A have bounded signatures, then the following are equivalent to the above as
well:

• A is size-pliable; • A is cc-pliable.

Classes of structures with bounded signatures (see Section 2 for precise definitions) cor-
respond to Max-CSP instances with a bounded number of constraint types; e.g. maximum
graph homomorphism. For example, any class of dense graphs as in Theorem 1.3 is in fact

size-pliable. An example of a class with unbounded signatures is any class of the form A(r)
G

(we do not consider infinite signatures, but there are arbitrarily many symbols in those sig-
natures). Theorem 1.5 allows us to give concrete and general examples of classes that are
not tw-pliable: the class of orientations of graphs in G, where G is any class of unbounded
average degree (Lemma 2.19 in Section 2.6), or any class of 3-regular graphs with unbounded
girth (Lemma 2.25 in Section 2.6).

Finally, as a side result, we connect hyperfiniteness to fragility. A class of graphs G is
called hyperfinite if for every ε > 0 there is a k = k(ε) such that in every G ∈ G one can
remove an at-most-ε fraction of edges to obtain a graph with connected components of size
at most k. For a monotone class of graphs (closed under taking subgraphs), hyperfiniteness
easily implies bounded degree. It is an important notion in property testing: many results in
sparse graphs were generalised by the statement that every property of hyperfinite graphs is
testable [76]. The idea, originating in the work of Benjamini, Schramm, and Shapira [7] and
Hassidim, Kelner, Nguyen, and Onak [51], is that following the approach of Lipton and Tarjan,
graphs with sufficiently sublinear separators, such as planar or excluded-minor graphs [2], can
be recursively partitioned into bounded-size components, which for bounded-degree graphs
gives hyperfiniteness (see e.g. [14, Cor. 3.2] for a slightly stronger property, cf. [72]). This
allows, analogously as in the dense case, to give a constant-size approximate description of
such graphs by sampling constant-radius balls in them [76]. See [43] for a book on property
testing and [61] for a recent improvement for excluded-minor graphs.

We show that a monotone class G is hyperfinite if and only if it is fractionally-tw-fragile
and has bounded degree. In fact, replacing the parameter treewidth by the maximum size of
a connected component in a graph, we have:

Theorem 1.6. Let G be a monotone class of graphs. The following are equivalent:

• G is hyperfinite;

• G is fractionally-tw-fragile and has bounded degree;

• G is fractionally-cc-fragile;

• A(r)
G is cc-pliable (for any r ≥ 2).
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The equivalence of the second and third bullet points was shown by Dvořák [29, Observation
15, Corollary 20], while for the third and fourth the proof is established by a generalisation
of Lemma 1.4, cf. Lemma 4.7.

Hyperfiniteness originates from the study of amenable groups and graphs limits, with
motivations in geometry and mathematical physics [38]. The unexpected connection with
fractional fragility already found an application in that area: Elek [39] showed that our
Theorem 1.6 gives that last missing implication in proving the equivalence of some properties
of infinite, bounded-degree graphs (in particular “uniform local amenability” and “Property
A”), which answers a question of Brodzki, Niblo, Spakula, Willett and Wright [10].

1.4 Related work

While this paper focuses on Max-r-CSPs, Baker’s technique and the regularity lemma apply
to many more problems. In fact Khanna and Motwani [57] argued that most known PTAS
algorithms can be derived from three canonical optimisation problems on planar graphs, the
first being Max-CSP and the latter two being so-called Max-Ones and Min-Ones CSPs (also
solvable with Baker’s technique). One of the very few results that did not fit their framework
was the PTAS for dense Max-Cut. A follow-up work by Mezei, Wrochna, and Živný [71] on
the extended abstract of this work [80] extended some of the results of the present paper to
Min- and Max-CSPs with crisp constraints, which include the Max-Ones and Min-Ones CSPs
mentioned above.

Generic frameworks extending Baker’s technique include the bidimensionality theory of De-
maine, Fomin, Hajiaghayi, and Thilikos [21] and its application in the design of PTASes by De-
maine and Hajiaghayi [22] (which is however limited to minor-closed graph classes); monotone
FO problems on minor-closed graph classes by Dawar, Grohe, Kreutzer, and Schweikardt [17];
and the idea of Baker games, introduced by Dvořák [30] (see also [34]). The latter gives
conditions stronger than fractional-tw-fragility, but useful for problems beyond Max-CSPs,
and achievable for all examples known to be fractionally fragile. The work of Dvořák and
Lahiri [33], which appeared after the present paper, gives a PTAS on fractionally-tw-fragile
classes of graphs for problems incomparable with Max-CSPs, namely monotone maximisation
problems expressible in terms of distances.

De la Vega and Karpinski [19, 20] extended the dense approach to subdense cases (Ω( n2

logn)
edges) for specific problems such as MaxCut and Max-2-SAT. In contrast, they show that
Max-Cut on graphs with Ω(n2−δ) edges is hard to approximate, for any δ > 0.

The best known approximation algorithm for general Max-2-CSPs is due to Charikar,
Hajiaghayi, and Karloff [13] and achieves an approximation factor of O((nq)1/3), where n is
the number of variables and q is the alphabet size. On the hardness side, Dinur, Fischer,
Kindler, Raz, and Safra [27] showed that O(2log

1−δ(nq))-approximation of Max-2-CSPs is NP-
hard. Manurangsi and Moshkovitz [68] gave approximation algorithms for dense Max-2-CSPs
with large alphabet size (but not PTASes). Manurangsi and Raghavendra [69] establish a tight
trade-off between running time and approximation ratio for dense Max-r-CSPs for r > 2.

CSPs have also been extensively studied for fixed constraint types, i.e., Max-Hom(−,B)
problems for fixed B. Raghavendra showed that the best approximation ratio is always
achieved by the basic SDP relaxation [78], assuming Khot’s unique games conjecture [58].
The exactly solvable cases were characterised by Thapper and Živný [86]. The approximation
factor of graph Max-CSPs was studied by Langberg, Rabani, and Swamy [62].
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1.5 Overview

In Section 2, we give formal definitions and present our basic tool: two structures A,B have
similar values of opt(−,C) if and only if there is a certain fractional cover, which we call an
overcast, from A to B and from B to A. Section 2 then relates our notion of pliability with two
notions of distances, and gives examples and non-examples of pliable classes of structures.

To prove that treewidth-pliability leads to a PTAS (Theorem 1.1) the main idea is that
an overcast allows to show that the values of opt(−,C) are still similar when we look at
linear programming relaxations. The details, as well as the definition of the Sherali-Adams
linear programming relaxation, are given in Section 3. In Section 4, we introduce equivalent
definitions of fractional fragility and study their properties. This will allow us to prove
Theorem 1.2 by showing how the definition implies suitable overcasts. This also allows us to
establish Lemma 1.4. Theorem 1.5 is proved in Section 5. Theorem 1.6 on hyperfiniteness is
proved in Section 6. Section 7 gives a proof of Theorem 1.3 on dense graphs.

We conclude with open questions in Section 9.

2 Preliminaries

2.1 Structures

A signature is a finite set σ of (function) symbols f , each with a specified finite arity ar(f).
We denote by |σ| the number of symbols in the signature σ. A structure A over a signature σ
(or σ-structure A, for short) is a finite domain A together with a function fA : Aar(f) → Q≥0

for each symbol f ∈ σ. We say that a class of structures has bounded signatures if for the
signatures σ of structures in the class, |σ| is bounded by a constant (so unbounded means
arbitrarily many symbols; we do not consider infinite signatures). Note that a class of σ-
structures (that is, structures over a fixed signature σ) has bounded signatures and bounded
arities (the maximum arity occurring in σ is a finite constant).

We denote by A,B,C, . . . the domains of structures A,B,C, . . . . For sets A and B, we
denote by BA the set of all mappings from A to B. We define tup(A) to be the set of all
pairs (f,x) such that f ∈ σ and x ∈ Aar(f), and by tup(A)>0 the pairs (f,x) ∈ tup(A) with
fA(x) > 0.

We denote ‖A‖∞ := max(f,x)∈tup(A) f
A(x) and ‖A‖1 :=

∑

(f,x)∈tup(A) f
A(x). For λ ≥ 0

we write λA for the rescaled σ-structure with domain A and fλA(x) := λfA(x), for (f,x) ∈
tup(A).

Given a σ-structure A, the Gaifman graph (or primal graph), denoted by G(A), is the
graph whose vertex set is the domain A, and whose edges are the pairs {u, v} for which there
is a tuple x and a symbol f ∈ σ such that u, v appear in x and fA(x) > 0.

For r ≥ 2 and a class of graphs G, we denote byA(r)
G the class of σ-structures A with G(A) ∈

G and ar(f) ≤ r for every f ∈ σ. (Note that A(r)
G contains structures over distinct signatures.)

The maximum homomorphism problem (Max-Hom) is the following computational prob-
lem. An instance of Max-Hom consists of two structures A and B over the same signature.
For a mapping h : A → B, we define value(h) =

∑

(f,x)∈tup(A) f
A(x)fB(h(x)). The goal is

to find the maximum value over all possible mappings h : A → B.3 We denote this value

3While called maximum homomorphism, we note that the maximisation is over all possible maps, not only
homomorphisms, i.e., those that map non-zero tuples into non-zero tuples.
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by opt(A,B). Note that when seen as a Max-CSP instance, the domain of the left-hand side
structure A is the variable set, while the domain of the right-hand side structure B is the
alphabet.

Example 2.1. Let σ = {f} be a signature consisting of a single symbol f of arity ar(f) = 2.
Let B be a σ-structure with the domain B = {0, 1} and let fB : B2 → Q≥0 be defined by
fB(x, y) = 1 if x 6= y and fB(x, y) = 0 if x = y. Given an undirected graph G = (V,E), we
can encode it as a σ-structure A with the domain A = V and with fA(x, y) = 1 if {x, y} ∈ E
and fA(x, y) = 0 otherwise. Now, the instance (A,B) of Max-Hom is the same as the Max-
Cut problem in G. The Max-DiCut problem (in a directed graph (V,E)) would be cast
as Max-Hom very similarly. The only differences would be in the definition of fA and fB:
fA(x, y) = 1 if (x, y) ∈ E and 0 otherwise, fB(x, y) = 1 if x = 0 and y = 1 and 0 otherwise.

Example 2.2. An example of a problem that is not a Max-Hom is the Maximum Independent
Set problem. Intuitively, the “no edges” constraints imposed on an independent set are strict.
This problem can be, however, cast as an instance of a Max-Hom with both rational and
(negative) infinite costs, cf. [71] for follow-up work.

Given a class A of structures, Max-Hom(A,−) is the problem restricted to instances (A,B)
of Max-Hom with A ∈ A (it is a promise problem: algorithms are allowed to do anything
when A 6∈ A). Recall that for a class of graphs G, the problem Max-r-CSP(G) is equivalent

to Max-Hom(A(r)
G ,−).4

2.2 Overcasts

Before we define pliability formally, it is useful to consider the following relation. The starting
point of all our results is the equivalence of this relation to a more combinatorial notion: the
existence of a certain fractional cover, which we shall call an overcast.

Definition 2.3. Let A and B be σ-structures. We say that A overcasts B, denoted A� B if,
for all σ-structures C, we have that opt(A,C) ≥ opt(B,C).

A distribution over a finite set U is a function π : U → Q≥0 such that
∑

x∈U π(x) = 1. We
write Ex∼π f(x) for

∑

x∈U π(x) · f(x) and Prx∼π[φ(x)] for Ex∼π[φ(x)], where [φ(x)] is 1 if x
satisfies the predicate φ and 0 otherwise.

Given a map g : A → B and a tuple x = (x1, . . . , xm) ∈ Am, we write g(x) for
(g(x1), . . . , g(xm)); i.e., we apply g componentwise on x. Hence, g−1(y) = {x | g(x) = y}.

Definition 2.4. Let A and B be σ-structures. An overcast from A to B is a distribution ω
over BA such that for each (f,x) ∈ tup(B) we have that

E
g∼ω

fA(g−1(x)) ≥ fB(x).

Here fA(g−1(x)) denotes the sum of fA(y) over y ∈ g−1(x) ⊆ Aar(f).

4Note that Max-Hom(A
(r)
G ,−) is different from the maximum graph homomorphism problem

Max-Hom(G,−). Indeed, graphs are also structures over the signature {e} with one symbol of arity 2 (where
eG(u, v) = [uv is an edge of G], if the graph is not weighted). To avoid confusion, we use G for a class of
Gaifman graphs of some structures and A for a class of graphs that are themselves used as input structures.
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Intuitively, an overcast from A to B is a random function from A to B such that for each
edge (tuple) in B, its preimage has larger expected weight (value). In other words, each edge
must be covered by at least its own weight, in expectation. The following is a consequence of
Farkas’ lemma, as shown in Appendix A.5

Proposition 2.5. A� B if and only if there is an overcast from A to B.

2.3 Pliability and graph parameters

Our definition of pliability involves a notion of distance which may be of independent interest.
It quantifies the relative difference between two structures (as measured from the right by
weighted multicut densities, in the language of Lovász’s book on graph limits [66, Ch. 12]).

Definition 2.6. The opt-distance between two structures with the same signature is defined
as:

dopt(A,B) := supC |ln opt(A,C)− ln opt(B,C)| .
Here ln 0 = −∞ and |ln 0− ln 0| = 0. Equivalently, we can compare rescaled structures; by
definition of � and the fact that opt(λA,C) = λopt(A,C), we have:

dopt(A,B) = inf
{

ε
∣

∣ A � e−ε B and B � e−εA
}

.

One may think of e±ε as close to 1 ± ε. Formally 1 − ε ≤ e−ε ≤ 1
1+ε = 1 − ε + O(ε2)

for ε ≥ 0. Note that the first definition readily implies that opt-distance satisfies the triangle
inequality (it defines a pseudometric).

Finally, a class is treewidth-pliable if it is uniformly close to structures of bounded
treewidth:

Definition 2.7. A class of structures A is p-pliable with respect to a graph parameter p if
for every ε > 0, there is k = k(ε) such that for every σ-structure A ∈ A there is a σ-structure
B with p(B) ≤ k and dopt(A,B) ≤ ε.

Thus to show tw-pliability of various classes, we will construct overcasts from structures
A in the class to (1− ε)B, for some B of bounded treewidth, and from B back to (1− ε)A.

Given a graph G, we will consider pliability for the following graph parameters:

• size(G) = |V (G)| – the number of vertices of G,

• cc(G) – the maximum size of a connected component of G,

• treedepth td(G), which is a parameter due to Nešetřil and Ossona de Mendez [74], whose
definition we recall below,

• treewidth tw(G),6

5The definitions of the � relation and of an overcast are analogous to the “improvement” relation and “in-
verse fractional homomorphisms” from [11]. Here, however, opt() is maximising, not minimising, so inequalities
in definitions are swapped. This has consequences such as the fact that mappings in the support of an overcast
are in general not homomorphisms (mapping non-zero tuples to non-zero tuples), unlike for inverse fractional
homomorphisms. The proof of Proposition 2.5 nevertheless is identical to the proof of [11, Proposition 3.6].

6We refer to [25] for the standard definitions of treewidth, pathwidth and minors.
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• and finally the Hadwiger number Hadwiger(G), which is the maximum k such that
Kk is a minor of G. We use the Hadwiger number as an example of a broader “spar-
sity” parameter: for example, all planar graphs have Hadwiger number at most 4 (yet
unbounded treewidth).

Definition 2.8. The treedepth td(G) of a graph G is defined recursively as:

• max
i

td(Gi), if G is disconnected with components Gi;

• min
v∈V (G)

td(G− v) + 1, if G is connected and has more than one vertex;

• 1, if G has one vertex.

An equivalent definition is as follows: a treedepth decomposition of a graph G is a rooted
forest T (a disjoint union of rooted trees) with V (T ) = V (G) such that for each uv ∈ E(G),
u is an ancestor or descendant of v in T . In other words, G is a subgraph of the transitive
closure of a forest T directed towards roots. The treedepth of G is equal to the minimum depth
among all such decompositions of G. Treedepth is a rather strict parameter: for example,
stars have treedepth 2, but paths already have unbounded treedepth. In fact, a short proof
shows that a class of graphs has bounded treedepth if and only if the length of the longest
path is bounded [74].

Bounded size implies bounded cc implies bounded td implies bounded pathwidth (pw)
implies bounded tw implies bounded Hadwiger number, more precisely:

Hadwiger(G) − 1 ≤ tw(G) ≤ pw(G) ≤ td(G) − 1 and td(G) ≤ cc(G) ≤ size(G).

Moreover, we also have the following inequality (less useful, because of the dependency on
G):

td(G) ≤ (tw(G) + 1) · log2 |G|.
All these parameters are monotone, that is, p(H) ≤ p(G) for a subgraph H of a graph G.

Their boundedness implies bounded average degree 2|E(G)|
|V (G)| . More precisely, 2|E(G)|

|V (G)| ≤ 2 tw(G)

(because a graph of treewidth k has a vertex of degree at most k); Kostochka [59] proved
2|E(G)|
|V (G)| ≤ O(h

√
h) where h = Hadwiger(G).

The size of a structure A is the number of vertices of its Gaifman graph: size(A) =
|V (G(A))|. The other graph parameters are also defined in terms of the same parameter on
the Gaifman graph of the structure; e.g., the treewidth of a structure A is the treewidth of its
Gaifman graph: tw(A) = tw(G(A)). In particular, since the edges of G(A) come only from
tuples in A of non-zero weight, a rescaled structure λA, for λ > 0, has G(λA) = G(A) so the
parameters we consider do not change by rescaling; for λ = 0, G(λA) has no edges.

We will often prove the easy directions in various characterisations via the following ob-
servation that follows from the definition of pliability:

Observation 2.9. If two graph parameters p and p′ satisfy p ≤ p′ then p′-pliability implies
p-pliability.
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2.4 Opt-distance zero and edit-distance

In this section we define our relative version of edit distance and prove it upper-bounds
opt-distance. We define the edit distance d1(A,B) between two valued σ-structures A,B to
be

d1(A,B) := min
bij. φ : A→B

∑

f∈σ

∑

x∈Aar(f)

∣

∣fA(x)− fB(φ(x))
∣

∣

min(‖Af‖1, ‖Bf‖1)
.

Here Af denotes the structureA limited to the signature {f}, so ‖Af‖1 denotes
∑

x∈Aar(f) fA(x).
The following generalises the notion of “looplessness” in graphs.

Definition 2.10. A σ-structure A is loopless if no tuple has a repetition. That is, for
(f,x) ∈ tup(A) with fA(x) > 0, x consists of ar(f) different elements of A.7

Lemma 2.11. For loopless structures, the opt-distance is bounded linearly by the edit distance:

dopt ≤ Cσ · d1,

where Cσ = maxf∈σ ar(f)
ar(f).

Proof. Let d1 = d1(A,B) and let φ : A → B be a bijection minimising the expression in its
definition. We will show that eCσ ·d1A � (1 + Cσ · d1)A � B. Symmetrically, eCσ ·d1B � A,
hence dopt ≤ Cσ · d1, which will conclude our claim.

Observe that for f ∈ σ

∑

x∈Aar(f)

∣

∣

∣
fA(x)− fB(φ(x))

∣

∣

∣
=

∑

x∈Bar(f)

∣

∣

∣
fB(x)− fA(φ−1(x))

∣

∣

∣
.

Let δ := Cσ ·d1
1+Cσ ·d1

, so 1 − δ = 1
1+Cσ ·d1

. To show (1 + Cσ · d1)A � B, we construct an
overcast ω from A to (1 − δ)B as follows. With probability (1 − δ) we map A to B with φ;
with probability δ we choose a tuple (f,x) ∈ tup(B) at random with probability proportional

to its contribution in d1, that is, |fB(x)−fA(φ−1(x))|
min(‖Af ‖1,‖Bf‖1)

· 1
d1
, and we map all of A uniformly at

random to the elements of this tuple. That is, after choosing (f,x) ∈ tup(B), each tuple of
Af gets mapped into x with probability 1

ar(f)ar(f)
(assuming A is loopless). Therefore, for each

(f,x) ∈ tup(B):

∑

g∈BA

ω(g) · fA(g−1(x)) ≥ (1− δ) · fA(φ−1(x)) + δ · |f
B(x)− fA(φ−1(x))|
min(‖Af‖1, ‖Bf‖1)

· 1

d1
· ‖Af‖1
ar(f)ar(f)

≥ (1− δ)fA(φ−1(x)) +
δ

Cσ · d1
· |fB(x)− fA(φ−1(x))| ≥ (1− δ)fB(x),

where the last inequality follows from δ
Cσ d1

= 1
1+Cσ d1

= 1 − δ. This shows that ω is indeed
an overcast that certifies A � (1− δ)B.

Observation 2.12. Let A be a tw-pliable class. Let B be a class of structures such that for
every B ∈ B there is an A ∈ A with dopt(B,A) ≤ f(tw(B)), for some function f(n) −−−→

n→∞
0.

Then B is tw-pliable.

7Equivalently, the Gaifman graph of A is loopless.
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Proof. Since A is tw-pliable, for every ε > 0 there is a k = k(ε) such that every structure A in
A is ε-close to some structure of tw ≤ k(ε). To show that B is tw-pliable, consider any ε > 0.
Let nε be large enough so that f(n) ≤ ε

2 for n ≥ nε. Then for B ∈ B, either tw(B) ≤ nε or
B is f(tw(B)) ≤ ε

2 -close to some structure A ∈ A, which in turn is ε
2 -close to some structure

of treewidth at most k( ε2 ). In either case B is ε-close to a structure of treewidth at most
max(nε, k(

ε
2 )).

2.5 Pliable examples

We give simple observations and examples: classes that are sufficiently close to pliable classes
(in edit or opt-distance) are themselves pliable. We first consider consider simple examples
with a fixed signature: graphs.

Lemma 2.13. Let A be a tw-pliable class of graphs. Let B be a class of graphs such that
every H ∈ B can be obtained from some G ∈ A by adding or removing f(|E(H)|) edges, for
some function f(m) ∈ o(m). Then B is tw-pliable.

Proof. By Lemma 2.11, dopt(H,G) ≤ 4 d1(H,G) ≤ f(|E(H)|)
|E(H)|−f(|E(H)|) = f ′(|E(H)|) for some

function f ′(n) −−−→
n→∞

0. This function can be upper-bounded by a monotonic function f ′′

decreasing to 0, say f ′′(x) := supn≥x f
′(n). Since |E(H)| ≥ tw(H), we conclude dopt(H,G) ≤

f ′′(|E(H)|) ≤ f ′′(tw(H)). The claim follows by Observation 2.12.

Other simple examples arise from considering structures at opt-distance zero. This is a
valued analogue of being homomorphically equivalent (see also valued cores in [11]).

Example 2.14. For every non-empty bipartite graph G, dopt(G,λK2) = 0, for λ = |E(G)|.
Therefore, since {λK2 : λ ∈ Q≥0} is trivially tw-pliable, every class of bipartite graphs is
tw-pliable.

Proof. A bipartite graph G admits a homomorphism h to K2. This gives an overcast showing
G � λK2: always map everything according to h. Conversely, mapping λK2 uniformly at
random to edges of G gives an overcast showing λK2 �G.

Example 2.15. Let G be a 3-colourable graph such that every edge of G occurs in exactly
one triangle. Then dopt(G,λK3) = 0 for λ = |E(G)|/3. Hence the class of all such graphs is
tw-pliable.

Proof. A 3-colouring of G corresponds to a homomorphism h to K3. Composing h with a
random rotation of K3 gives an overcast from G to λK3. Conversely, mapping λK3 to a
uniformly random triangle in G covers each edge with probability 1

λ , giving an overcast from
λK3 to G.

The above idea also implies that our results cannot be extended to finding solutions. This
is analogous to the hardness of finding a 3-colouring of a graph that is homomorphically
equivalent to K3.

Example 2.16. There is a class of weighted graphs A that is tw-pliable, yet for some ε > 0,
there is no poly-time algorithm that finds a map h : V (G) → V (K3) with value(h) ≥ (1 −
ε)opt(G,K3) for G ∈ A, unless P = NP.
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Proof. Let A be the class of weighted graphs G satisfying dopt(G,λK3) = 0 for λ = ‖G‖1
3 .

Suppose there is an algorithm as above for each ε > 0. There are constants ε0, d such that
it is NP-hard to distinguish 3-colourable graphs of maximum degree d from graphs where
any map h : V (G) → V (K3) miscolours more than an ε0 fraction of edges [49]. We use our
algorithm to solve the problem. Given an instance G, let G′ be the weighted graph obtained
by gluing a new triangle to every edge, and then assigning to every edge e ∈ E(G′) a weight
w(e) equal to the number of triangles it occurs in. Note 1 ≤ w(e) ≤ d. Observe that if G
was 3-colourable, then G′ would be as well, hence opt(G′,K3) = ‖G′‖1. Moreover, G′ would
be in A by an argument similar as in Example 2.15. Hence running the algorithm on G′,
we would find a 3-colouring h which miscolours at most εopt(G′,K3) = ε‖G′‖1 of the total
weight ‖G′‖1. Since w ≥ 1, it miscolours at most ε‖G′‖1 edges. Since w ≤ d, this is at most
εd|E(G′)| ≤ 3εd|E(G)|. Hence running the algorithm for ε = ε0

3d would find a colouring of the
original graph G that miscolours at most ε0|E(G)| edges. Therefore if we run this procedure
for any G (regardless of its 3-colourability), then it either outputs a colouring as above, or we
can conclude that G is not 3-colourable.

2.6 Non-pliable examples

In this section we give examples of non-pliable classes. In the process we show equivalent
definitions of pliability (Lemmas 2.22 and 2.23).

We will use the following bound (in this section and in the proof of Lemma 8.3 in Section 8):

λm
∑

i=0

(

m

i

)

≤ 2H(λ)m,

where H(λ) is a function which satisfies limλ→0 H(λ) = 0; specifically, the binary entropy
function H(λ) = λ log2(

1
λ)− (1− λ) log2(1− λ).

Recall that by Lemma 1.4, for a class of Gaifman graphs G, the class A(2)
G of all structures

over G is tw-pliable if and only if G is fractionally-tw-fragile. So the simplest examples of

non-pliable classes are A(2)
G for some non-fractionally-fragile G. Fractional-tw-fragility implies

bounded expansion (a notion from the theory of sparse graphs introduced by Nešetřil and
Ossona de Mendez [75]) and sublinear separators, e.g., 3-regular expander graphs are not

fractionally-tw-fragile, see [29]. Hence for G the class of all 3-regular graphs, A(2)
G is not

tw-pliable.
A somewhat more direct proof is to consider any class of 3-regular graphs of high girth.

Thomassen [87] showed that such graphs behave much like graphs of high average degree. We
use essentially the same proof below:

Lemma 2.17. For δ > 0 and g ∈ N, every graph with average degree ≥ 2 + δ and girth ≥ 3g
has a minor with average degree ≥ gδ + 2.

Proof. Let G = (V,E). Without loss of generality assume that G is connected (otherwise
take the component with the largest average degree). Let A1, . . . , Am be a partition of V
into parts of size |Ai| ≥ g that induce connected subgraphs, with m maximum among such
partitions (clearly one exists with m = 1).

We claim that each set Ai induces a tree. Indeed, consider any spanning tree T of G[Ai]
and let e be an edge of G[Ai] outside of T . Then T + e contains a unique cycle, which must
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have length ≥ 3g ≥ 2g. Hence one can remove e and some other edge from this cycle to split
it into two intervals with ≥ g vertices. Removing these two edges from T + e splits it into two
components spanning Ai with ≥ g vertices each. Hence Ai could be replaced with the vertex
sets of these two components, contradicting the choice of m.

Similarly, we claim that every two sets Ai, Aj are connected by at most one edge. Other-
wise two such edges together with spanning trees of Ai and Aj would form a unicyclic graph,
which could be split as above into three connected parts with ≥ g vertices each.

Let G′ = (E′, V ′) be the graph resulting by contracting the sets Ai. Since we contract

sets of ≥ g vertices, |V ′| = m ≤ |V |
g . Since no two edges get identified and no loop gets

created/removed in the process, the number of contractions is equal to |E| − |E′| and to
|V | − |V ′|. Hence |E′| = |E| − |V | + |V ′| ≥ (2+δ

2 − 1)|V | + |V ′| ≥ (g δ
2 + 1)|V ′|, so G′ has

average degree ≥ gδ + 2. (We note that each G[Ai] had diameter < 2g − 1, as otherwise it
could be split into two parts; hence the minor we obtain is relatively shallow).

Proposition 2.18. Let δ > 0 and let G be a class of graphs with unbounded girth and average
degree ≥ 2 + δ. Then G is not fractionally-tw-fragile.

Proof. Suppose that G is fractionally-tw-fragile. Then, by Lemma 4.4, for ε = δ
2(2+δ) there

is a k = k(ε) such that every graph in G has a subset F ⊆ E(G) with |F | ≤ ε|E(G)| such
that tw(G − F ) ≤ k. Let G ∈ G be a graph with girth ≥ 12k

δ . Let F be as above. Then

tw(G−F ) ≤ k and 2|E(G−F )| ≥ (1−ε) ·2|E(G)| ≥ (1−ε)(2+δ)|V (G)| = (2+ δ
2)|V (G−F )|.

Therefore, G − F has average degree ≥ (2 + δ
2) and girth ≥ 3 · 4k

δ , so by Lemma 2.17 it has

a minor with average degree ≥ 2 + 4k
δ

δ
2 > 2k. But a minor of G− F must have treewidth at

most tw(G − F ) ≤ k, so average degree ≤ 2k, a contradiction.

We now turn to classes of structures with a fixed signature σ. We will show that the class of
tournaments (orientations of complete graphs) is not tw-pliable (or equivalently, size-pliable,
by Theorem 1.5), in contrast to cliques and dense graphs (Example 7.2 and Theorem 1.3).

Lemma 2.19. Let G be a class of graphs of unbounded average degree. Let A be the class of
(unweighted) orientations of graphs in G. Then A is not size-pliable.

In order to prove Lemma 2.19, we will need some definitions (only for this subsection) and
alternative characterisations of size-pliability.

Definition 2.20. For a graph parameter p, let p̄ be the parameter defined as p̄(G) :=
maxi(p(Gi)), where Gi are the connected components of G.

For example, if p is size , then p̄ is cc (max component size). All the other parameters we
consider (cc, td, tw, Hadwiger) satisfy p̄ = p.

Definition 2.21. A parameter p is good if p̄-pliability is the same as size-pliability on classes
of structures with bounded signatures.

We use this definition to state the next few lemmas in full generality. Theorem 1.5 shows
that the parameters size, cc, td, tw, Hadwiger are good.

For two σ-structures A,B and a function g : A → B, we define Im(g) to be the σ-structure
on B with f Im(g)(x) := min

(

fA(g−1(x)), fB(x)
)

. Note that Im(g) ⊆ B (meaning each tuple
has value in Im(g) less than or equal its value in B).
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Lemma 2.22. Let p be a good parameter. Then a class of σ-structures A is size-pliable if
and only if ∀ε>0∃k∀A ∈ A there is an overcast ω from A to (1−ε)A such that every g : A → A
in its support has p(Im(g)) ≤ k.

Proof. For one direction, suppose that for every ε > 0 there is an integer k such that all
A ∈ A have an overcast ω from A to (1 − ε)A such that every g : A → A in its support
has p(Im(g)) ≤ k. Then for these ε, k,A we can take B to be the disjoint union of rescaled
structures Bg := ω(g) Im(g). We have p̄(B) ≤ k. The overcast ω naturally induces overcasts
showing A � B � (1 − ε)A. Namely, we can define an overcast ω′ from A to B by letting
ω′(g′) = ω(g) for g′ mapping A to Bg ⊆ B just as g maps A to Im(g) ⊆ A. We can also
define an overcast ω′′ from B to (1 − ε)A by letting ω′′(g′′) = 1 for one function g′′ mapping
each Bg ⊆ B to Im(g) ⊆ A. Hence dopt(A,B) ≤ ε+O(ε2) (recall 1± ε is close to e±ε), which
concludes the proof that A is p̄-pliable. Since we assume that p is a good parameter, A is
size-pliable.

In the other direction, suppose A is size-pliable, meaning for every ε > 0 there is an
integer k such that all A have a B with dopt(A,B) ≤ ε and |B| ≤ k. This means there are
overcast ω and ω′ showing A� e−εB and B� e−εA, respectively. Then composing ω with ω′

gives an overcast from A to (1− 2ε)A (since e−2ε ≥ 1− 2ε), with the property that all images
of functions g in the support are of size at most |B| ≤ k, which implies p(Im(g)) is bounded
by some function of k (namely max p(H) over all k-vertex graphs H).

We can now use Farkas’ lemma to deduce another equivalent formulation:

Lemma 2.23. Let p be a good parameter. Then a class of σ-structures A is not size-pliable
if and only if ∃ε>0∀k∈N there is a pair of σ-structures A ∈ A and C with C = A, such that
for every g : A → C with p(Im(g)) ≤ k, value(g) < (1− ε) value(id). (Here id is the identity
map from A to C = A).

Proof. By Lemma 2.22, A is not size-pliable if and only if ∃ε>0∀k∈N the following LP over
variables {ω(g) : g ∈ V }, where V := {g ∈ AA : p(Im(g)) ≤ k}, has no non-negative rational
solution:

∑

g∈V

ω(g)fA(g−1(x)) ≥ (1− ε)fA(x) ∀(f,x) ∈ tup(A)

∑

g∈V

ω(g) = 1

By applying Lemma A.2, this is equivalent to the existence of a non-negative vector
(y(f,x))(f,x)∈tup(A) such that

∑

(f,x)∈tup(A)

y(f,x)fA(g−1(x)) < (1− ε)
∑

(f,x)∈tup(A)

y(f,x)fA(x) ∀g ∈ V

Let C be the σ-structure on C = A with fC(x) := y(f,x). Then the above inequality is
restated as follows (interpreting g ∈ V and id as maps from A to C):

value(g) < (1− ε) value(id) ∀g ∈ V .
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Remark 2.24. The structures A,C obtained above can be assumed to satisfy G(A) = G(C)
without loss of generality, because for any (f,x) ∈ tup(A) such that one of fA(x) or fC(x) is
zero, decreasing the other to zero will not change value(id) and can only decrease value(g).

Proof of Lemma 2.19. Let ε be a constant to be chosen later ( 1
10 will do). Given any k, let

G ∈ G be a graph with m ≥ 20 ·
(

k
2

)

edges, n vertices, and average degree 2m
n ≥ 100 log2 k.

Let A be a random orientation of G (each edge is independently oriented in either direction
with probability 1

2). We claim that with positive probability A admits no map g : A → A to
itself with image of size at most k such that value(g) ≥ (1− ε) value(id). This will prove that
A satisfies the conditions of Lemma 2.23 and hence is not size-pliable.

If a map as above existed, it would imply the existence of an oriented graph D (with at
most one arc between every two vertices) on at most k vertices and a function g : A → V (D)
with value(g) ≥ (1− ε)m. Observe that value(g) is the number of arcs of A that are correctly
mapped by g (i.e., to an arc of D with the same orientation). Hence there would be a set F of
at most εm arcs of A such that g maps all arcs of A−F correctly. Let us bound the probability

that there exists such D,F, g. The number of possible D is ≤ 3(
k
2); the number of possible

F is ≤ ∑εm
i=0

(m
i

)

≤ 2H(ε)m; the number of possible g is ≤ kn. Note that 2m
n ≥ 100 log2 k

and 3(
k
2) ≤ 2m/10 by our choice of G. For fixed D,F, g, the probability that g maps all arcs

of A− F correctly to D is at most (12 )
(1−ε)m. Hence in total the probability that some such

D,F, g exist is at most

3(
k
2) · 2H(ε)m · kn · 2−(1−ε)m ≤ 2n log2 k−(1−ε−H(ε)− 1

10
)m ≤ 2−(1−ε−H(ε)− 1

10
− 1

50
)·m.

This is less than 1 for ε small enough so that 1− ε−H(ε)− 1
10 − 1

50 > 0.

Finally, not all classes of bounded degree give pliable classes, even with a fixed signature.

Lemma 2.25. Let G be a class of graphs with unbounded girth and average degree ≥ 2+δ (δ >
0). Let A be the class of (unweighted) orientations of graphs in G. Then A is not size-pliable.

Proof. We show there exists an ε such that for all k, there is an orientation A ∈ A of a graph
in G such that every function g : A → A with cc(Im(g)) ≤ k has value(g) < (1 − ε) value(id).
We choose ε later depending on δ only.

For any given k, let G ∈ G be a graph of girth > k. Let m = |E(G)|. Let A be
a random orientation of G: every edge is independently oriented in one direction or the
other. We claim that the probability that there exists a g : A → A with cc(Im(g)) ≤ k and
value(g) ≥ (1−ε) value(id) is strictly less than one (so there exists an orientation that satisfies
our goal). Note that value(id) = m and value(g) is the number of arcs in A that are mapped
correctly (to an arc in A with the same orientation); moreover, since the graph underlying A

has girth > k and cc(Im(g)) ≤ k, g must map into an oriented forest (disjoint union of trees).
So the event is equivalent to the following: there exists a set F ⊆ E(G) with |F | ≤ εm and a
function g : A → A which maps all arcs of A− F correctly into an oriented forest in A.

The probability of this event can be union-bounded by the sum over F ⊆ E(G) with
|F | ≤ εm of the probability that all of A−F can be mapped correctly into a subdigraph. The
number of such F is

∑εm
i=0

(

m
i

)

≤ 2H(ε)·m; It remains to bound, for a fixed F , the probability
that A− F can be mapped correctly.

Consider a fixed F ⊆ E(G) with |F | ≤ εm. If A − F can be mapped correctly into an
oriented forest in A, then in particular it admits a homomorphism to C3, the directed cycle
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digraph with three arcs. Let T be a spanning forest of A−F (a union of spanning trees of each
connected component of G−F ). There exists exactly one homomorphism from the edges of T
in A to C3 (up to rotations in C3 of each component); every remaining edge in A−F −E(T )
closes an oriented cycle, so it has at most one orientation which allows to extend this unique
homomorphism to it. Hence the probability that A− F admits a homomorphism to C3 is at
most (12 )

m′
where m′ = m− |F | − |E(T )| ≥ m− εm−|V (G)| ≥ (1− ε− 2

2+δ )m = ( δ
2+δ − ε)m.

All in all, the probability of our original event is at most 2H(ε)·m ·(12)m
′ ≤ 2−( δ

2+δ
−ε−H(ε))m.

Hence it suffices to choose ε small enough so that ε+H(ε) < δ
2+δ .

3 Pliable structures admit a PTAS: proof of Theorem 1.1

We first define the Sherali-Adams LP hierarchy [83] for Max-Hom. Let (A,B) be an instance
of Max-Hom over a signature σ and let k ≥ maxf∈σ ar(f). For a tuple x, we denote by Set(x)

the set of elements appearing in x. We write
( A
≤k

)

for the set of subsets of A with at most k
elements. The Sherali-Adams relaxation of level k [83] of (A,B) is the linear program given
in Figure 1, which has one variable λ(X, s) for each X ∈

( A
≤k

)

and each s : X → B.
We denote by optk(A,B) the optimum value of this linear program.

max
∑

(f,x)∈tup(A), s : Set(x)→B

λ(Set(x), s)fA(x)fB(s(x))

λ(X, s) =
∑

r : Y→B, r|X=s

λ(Y, r) for X ⊆ Y ∈
( A
≤k

)

and s : X → B

∑

s : X→B

λ(X, s) = 1 for X ∈
( A
≤k

)

λ(X, s) ≥ 0 for X ∈
( A
≤k

)

and s : X → B

Figure 1: The Sherali-Adams relaxation of level k of Max-Hom instance (A,B).

Observation 3.1. Let A be a σ-structure, λ ≥ 0 and k ≥ maxf∈σ ar(f). Then for all
σ-structures C, we have opt(λA,C) = λopt(A,C) and optk(λA,C) = λoptk(A,C).

Definition 3.2. Let A and B be σ-structures and k ≥ maxf∈σ ar(f). We write A�k B if, for
all σ-structures C, we have optk(A,C) ≥ optk(B,C).

The proof of the following is analogous to the proof of [11, Proposition 5.2]. For complete-
ness, it is given in Appendix B.

Proposition 3.3. Let A and B be σ-structures and k ≥ maxf∈σ ar(f). If there is an overcast
from A to B then A�k B.

Using Observation 3.1 and Proposition 3.3, we are ready to prove the following.

Proposition 3.4. Let A be a σ-structure. Let ε ≥ 0 and k ≥ maxf∈σ ar(f). Suppose that
there exists a σ-structure B such that dopt(A,B) ≤ ε and tw(B) ≤ k. Then, for every σ-
structure C, we have that

opt(A,C) ≤ optk(A,C) ≤ (1 +O(ε))opt(A,C).
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Proof. The left-hand side inequality is from the definition of Sherali-Adams. For the right-
hand side inequality, observe first that, by definition of dopt, A�e−εB and B�e−εA. By Propo-
sition 2.5, there is an overcast from B to e−εA, so by Proposition 3.3, it follows that B�k e

−εA.
By Observation 3.1, we have that optk(B,C) ≥ e−εoptk(A,C). Since tw(B) ≤ k, we have
optk(B,C) = opt(B,C) – this follows, for example, from [11, Theorem 5.8].8 Since moreover
A�e−εB, by Observation 3.1, it follows that opt(A,C) ≥ e−εopt(B,C). Together, opt(A,C) ≥
e−εopt(B,C) = e−εoptk(B,C) ≥ e−2εoptk(A,C). Hence optk(A,C) ≤ e2εopt(A,C).

Since optk(A,C) can be computed in time (|A| · |C|)O(k), this concludes the proof of
Theorem 1.1.

4 Fractional fragility

To give Dvořák’s definition of fractional fragility [29] we first define ε-thin distributions.

Definition 4.1. Let F be a family of subsets of a set V and ε > 0. We say that a distribution
π over F is ε-thin if PrX∼π[v ∈ X] ≤ ε for all v ∈ V .

Definition 4.2. For a graph parameter p and a number k, we define a (p ≤ k)-modulator of
a graph G to be a set X ⊆ V (G) such that p(G −X) ≤ k. A fractional (p ≤ k)-modulator
is a distribution π of such modulators X. We say that a class of graphs G is fractionally-
p-fragile if for every ε > 0 there is a k such that every G ∈ G has an ε-thin fractional
(p ≤ k)-modulator. We can analogously define (p ≤ k)-edge-modulators F ⊆ E(G) and
fractionally-p-edge-fragility.

One crucial property of fractional fragility is that it allows a dual definition by a variant
of Farkas’ lemma (cf. Appendix A for details); this is already implicit in [32, Lemma 6].

Lemma 4.3. Let F be a family of subsets of a set V . The following are equivalent:

• there is an ε-thin distribution π of sets in F ;

• for all non-negative weights (w(v))v∈V , there is an X ∈ F such that w(X) :=
∑

x∈X w(x) ≤
ε · w(V ).

Thus a class of graphs G is fractionally-tw-fragile if and only if for every ε > 0 there is a
k such that for every graph G ∈ G and every vertex-weight function w, one can remove a set
of vertices of weight at most ε · w(V ) to obtain a graph with tw ≤ k.

Another useful property of fractional fragility is that the edge version is equivalent to
the vertex version, for most parameters of interest. Recall that each parameter we consider
(Hadwiger, tw , tw , td , cc , size ) is monotone, meaning p(H) ≤ p(G) for H a subgraph of G;

and that the average degree 2|E(G)|
|V (G)| is bounded by a function of p.

Lemma 4.4. Let p be a monotone graph parameter such that the average degree 2|E(G)|
|V (G)| of a

graph is bounded by a function of p(G). Let G be a class of graphs. Then the following are
equivalent:

8Our definition of the LP slightly differs from [11], where there are additional variables λ(f,x, s) associated
with tuples (f,x) with fA(x) > 0. However, since we are assuming without loss of generality that k ≥
maxf∈σ ar(f), the two definitions are equivalent.
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• G is fractionally-p-fragile;

• G is fractionally-p-edge-fragile;

• ∀ε>0∃k∀G∈G∀w : V (G)→Q≥0
∃X⊆V (G) w(X) ≤ εw(V (G)) and p(G−X) ≤ k;

• ∀ε>0∃k∀G∈G∀w : E(G)→Q≥0
∃F⊆E(G) w(F ) ≤ εw(E(G)) and p(G− F ) ≤ k.

Proof. (i) is equivalent to (iii) and (ii) is equivalent to (iv) by Lemma 4.3.
It is easy to see that (i) implies (iv): suppose for every ε > 0 there is a k such that every

G ∈ G has an ε-thin fractional (p ≤ k)-modulator π. Let w : E(G) → Q≥0 be any edge-weight
function. If we take a set X from the distribution π and remove the set F of all edges incident
to X, this yields a graph with p(G − F ) ≤ k. Every vertex is in X with probability ≤ ε, so
every edge is in F with probability ≤ 2ε. Hence the expected weight of F is ≤ 2εw(E(G)).
So there exists a set F ⊆ E(G) such that w(F ) ≤ 2εw(E(G)) and p(G− F ) ≤ k.

It remains to show that (iv) implies (iii). Let f : N → N be such that 2|E(G)|
|V (G)| ≤ f(p(G))

for all graphs G.
We first show that (iv) implies that G has bounded maximum average degree mad(G) :=

maxH⊆G
2|E(H)|
|V (H)| . Indeed, let k := k(ε) be a number satisfying (iv) for ε = 1

2 . Then for any

G ∈ G and any H ⊆ G, let w : E(G) → Q≥0 assign 1 to edges in H and 0 to edges not in H.
By assumption there is a set F ⊆ E(G) such that w(F ) ≤ εw(E(G)) and p(G− F ) ≤ k. Let
F ′ := F ∩ E(H); then |F ′| = w(F ) ≤ εw(E(G)) = ε|E(H)| and p(H − F ′) ≤ p(G − F ) ≤ k.

Hence (1 − ε)|E(H)| ≤ |E(H − F ′)| ≤ f(k)
2 · |V (H − F ′)|, which means 2|E(H)|

|V (H)| ≤ f(k(ε))
1−ε =

2f(k(12 )). That is, every subgraph H of every graph G in G has average degree at most
D := 2f(k(12 )).

This implies that every subgraph has some vertex of degree at most D (this is called the
degeneracy of the graph: it is upper bounded by mad). Hence every graph G in G has an
orientation ~G with maximum in-degree at most D (obtained by iteratively finding a vertex of
degree at most D, orienting all remaining edges towards it, and removing the vertex).

To show (iii), let ε > 0, k′ := k( ε
D ), G ∈ G. Choose an orientation ~G of G with

maximum in-degree at most D. Given w : V (G) → Q≥0, we can define w′ : E(G) → Q≥0 as
w′(uv) := w(v) if uv is directed towards v. By assumption, there is a set of edges F such that
p(G− F ) ≤ k′ and

w′(F ) ≤ ε

D
w′(E(G)).

Let X := {v : ∃uv ∈ F directed towards v}; then G −X ⊆ G − F , so p(G −X) ≤ k′. Note
that

w′(E(G)) =
∑

~uv∈E(~G)

w(v) =
∑

v∈V (G)

in-deg(v) · w(v) ≤ D · w(V (G))

and
w′(F ) =

∑

~uv∈F

w(v) ≥
∑

v∈X

w(v) = w(X)

Hence
w(X) ≤ w′(F ) ≤ ε

D
w′(E(G)) ≤ ε · w(V (G)).

This concludes the proof that (iv) implies (iii).
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Dvořák and Sereni [32, Theorem 31] showed that graphs of bounded treewidth are fractionally-
td-fragile. It follows from a result of DeVos et al. [24, Theorem 1.2] that for H-minor-free
graphs (for any graph H, that is classes of graphs that exclude some minor, or equivalently,
classes of bounded Hadwiger number) are fractionally-tw-fragile.9 These two facts establish
the following equivalence, by [29, Lemma 12].

Theorem 4.5 ([32, 24, 29]). The following are equivalent for a class of graphs G:

• G is fractionally-td-fragile;

• G is fractionally-tw-fragile;

• G is fractionally-Hadwiger-fragile.

4.1 Fragility implies pliability: proof of Theorem 1.2

We denote by G⊎H the disjoint union of graphs G andH. All graph parameters p we consider
satisfy p(G ⊎ H) = max(p(G),p(H)) for all G,H (that is: cc, td, tw, Hadwiger, excluding
only size; we never consider fractional-size-fragility, as it is equivalent to just bounded size).

Lemma 4.6. Let p be a graph parameter such that p(G⊎H) = max(p(G),p(H)) for all G,H.
Let A be a class of structures of bounded arity r such that the class G of their Gaifman graphs
is fractionally-p-fragile. Then A is p-pliable.

Proof. For ε > 0, let ε′ := ε
1+ε · 1

r . By definition of fractional-p-fragility, ∃k(ε)∀G∈G G has
an ε′-thin fractional (p ≤ k)-modulator. Let A ∈ A be a structure with Gaifman graph
G ∈ G. By assumption, G has a fractional (p ≤ k)-modulator π such that for every v ∈ V (G),
PrX∼π[v ∈ X] ≤ ε′. For X ⊆ V (G) = A in the support of π, let BX be the rescaling of A−X
by a factor of π(X); let B be the disjoint union of all BX . Since each X in the support of π
is a (p ≤ k)-modulator and p is closed under disjoint union, p(G(B)) ≤ k.

We define overcasts ω : A → B and ω′ : B → (1 − rε′)A. The first, ω, maps A identically
to each component BX of B with probability π(X) (vertices of A in X are mapped arbitrarily
in the same component). The second, ω′, deterministically maps each component BX of B
identically to A. To check that ω′ is indeed an overcast, consider a tuple (f,x) ∈ tup(A).
The tuple is covered by its copies in BX with weight π(X) · fA(X) for all X which do not
intersect x. In total, the fraction of fA(x) lost is hence exactly PrX∼π[X ∩ x 6= ∅], which is
(by union bound and by the assumption |x| ≤ r) at most ε′r. Since 1 − ε′r = 1

1+ε ≥ e−ε, we
have A�B� (1− ε′r)A�e−εA, which means B is a structure at opt-distance ≤ ε from A.

This concludes Theorem 1.2: structures on fractionally-tw-fragile graphs are tw-pliable.

4.2 Pliability vs fragility: proof of Lemma 1.4

For Lemma 1.4, we need the other direction than in Theorem 1.2: that if all structures on
Gaifman graphs in G are tw-pliable, then G is fractionally-tw-fragile. To do this, intuitively,
we consider, for a graph G ∈ G, a structure A where each edge is used by a different symbol of
the signature. If we have a structure B (of bounded treewidth) close to A in opt-distance, this

9In fact, as shown by Dvořák [30], a proof of van den Heuvel et al. [88, Lemma 4.1] can be adapted to show
this without the Graph Minors Structure Theorem.
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implies overcasts from A to e−εB and from B to e−εA; composing the two gives an overcast
from e+εA to e−εA in which (since each edge is used by a different symbol) an edge can
only be covered by itself. This shows that the overcasts are mostly injective and that B,
sandwiched between e+εA and e−εA, must be close in edit distance. The bounded treewidth
of B then implies that the graph G underlying A is in fact fractionally-tw-edge-fragile, which
by Lemma 4.4 concludes the proof.

The formal proof of Lemma 1.4 follows. In fact, we prove prove the statement for any
reasonable parameter, including cc, td, tw, and Hadwiger; the conclusion is the edge variant
of fractional fragility, but the two are equivalent by Lemma 4.4.

Lemma 4.7 (Lemma 1.4 more generally). Let p be a monotone graph parameter such that
p(G ⊎H) = max(p(G),p(H)). For every integer r ≥ 2, a class of graphs G is fractionally-p-

edge-fragile if and only if A(r)
G is p-pliable.

Proof. If G is fractionally-p-fragile, then by Lemma 4.6 A(r)
G is p-pliable.

For the other direction, suppose A(r)
G is p-pliable:

∀ε>0∃k(ε)∀A∈A(r)
G

∃
B

p(B) ≤ k and dopt(A,B) ≤ ε.

Let ε > 0 and let k := k( ε2 ). For a graph G ∈ G, let σ be the signature with a different
binary symbol fe for each e ∈ E(G). Let A be the σ-structure with domain V (G) and values
fA
e (u, v) = 1 if {u, v} = e, 0 otherwise. (The arity can be increased to exactly r by adding
dummy or repeated variables). By assumption, there is a σ-structure B such that p(B) ≤ k
and dopt(A,B) ≤ ε

2 . Let ω, ω
′ be overcasts from A to exp(− ε

2) · B and from B to exp(− ε
2) · A,

respectively.
For g with ω(g) > 0 and g′ with ω′(g′) > 0, let Fgg′ ⊆ E(G) be the subset of edges e such

that g′(g(e)) 6= e or fB
e (g(e)) = 0. Since g′ ◦ g is the identity on E(G) − Fgg′ , the functions

g′ and g are bijections between this set and a subset of edges of G(B). Hence G − Fgg′ is
isomorphic to a subgraph of G(B), which implies p(G− Fgg′) ≤ k.

Let e ∈ E(G). We claim that Pr
g∼ω
g′∼ω′

[e ∈ Fgg′ ] ≤ ε. This holds essentially because the

composition of ω and ω′ is an overcast from A to exp(−ε) ·A and because the only edge with
non-zero value of fA

e is e itself. Formally, since ω is an overcast, we have:

for each eB ∈ E(G(B)) E
g∼ω

fA
e (g

−1(eB)) ≥ exp(− ε
2)f

B
e (eB).

Note that by construction of A, fA
e (g

−1(eB)) = [g(e) = eB ]. Hence for each eB ∈ E(G(B)),

E
g∼ω

[g(e) = eB ] ≥ exp(− ε
2)f

B
e (eB).

Moreover, since ω′ is an overcast, we have:

E
g′∼ω′

fB
e (g

′−1(e)) ≥ exp(− ε
2)f

A
e (e).

That is:
E

g′∼ω′

∑

eB∈E(G(B))
g′(eB)=e

fB
e (eB) ≥ exp(− ε

2).
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Putting the two together:

Pr
g∼ω
g′∼ω′

[e 6∈ Fgg′ ] = Pr
g∼ω
g′∼ω′

[g′(g(e)) = e and g(e) ∈ E(G(B))]

= E
g∼ω
g′∼ω′

∑

eB∈E(G(B))
g′(eB)=e

[g(e) = eB ]

≥ E
g′∼ω′

∑

eB∈E(G(B))
g′(eB)=e

exp(− ε
2)f

B
e (eB)

≥ exp(−ε) ≥ 1− ε.

Therefore, we obtained a distribution of edge sets Fgg′ ⊆ E(G) such that p(G−Fgg′) ≤ k
satisfying Pr

g∼ω
g′∼ω′

[e ∈ Fgg′ ] ≤ ε. This is an ε-thin fractional (p ≤ k)-edge-modulator.

5 From Hadwiger- to size-pliability: proof of Theorem 1.5

In this section, we prove Theorem 1.5: pliability with respect to different parameters yields
equivalent definitions. The first half of Theorem 1.5 follows easily from already established
results and a simple observation, cf. Section 5.1. The second half of Theorem 1.5 reduces to
showing that structures of bounded treedepth with a bounded signature are size-pliable. The
strategy for the proof is similar to a proof of Nešetřil and Ossona de Mendez [74, Corollary 3.3]
that relational structures of bounded treedepth have bounded cores. However the argument
is much more intricate due to the fact that we consider valued structures: the statement that
there are only finitely many structures of size at most C, for every C, is not true anymore.
The main difficulty is proving an approximate version of it.

5.1 Treewidth-, treedepth-, and Hadwiger-pliability

The first half of Theorem 1.5, that is, the equivalence of p-pliability for p ∈ {tw, td,Hadwiger},
will follow (as detailed in Corollary 5.2 below) from the equivalence of fractional-p-fragility
for these parameters (Theorem 4.5), the fact that fragility implies pliability (Lemma 4.6), and
transitivity of pliability, in the following sense.

Observation 5.1 (Transitivity of pliability). Let A be a class of structures with signatures
from a set Σ. Suppose A is p-pliable and for each k, {A : p(A) ≤ k} is p′-pliable, where A

runs over all structures with signatures in Σ. Then A is p′-pliable.

Proof. Intuitively, this hold because dopt is a pseudometric. Formally, suppose a class A is
p-pliable. Then every A ∈ A is ε

2 -close (in dopt distance) to some B with p(B) ≤ k (for
some k depending on ε

2 ). By assumption, every B with p(B) ≤ k is ε
2 -close to some C with

p′(C) ≤ k′ (for some k′ depending on ε
2 and k). Hence A is ε-close to some structure C with

p′(C) ≤ k′( ε2 , k(
ε
2 )), which only depends on ε.

Corollary 5.2. Let A be any class of structures. The following are equivalent:

• A is td-pliable;
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• A is tw-pliable;

• A is Hadwiger-pliable.

Proof. Since td(G) ≥ tw(G) + 1 ≥ Hadwiger(G) for any graph G, each bullet point implies
the next by Observation 2.9. It suffices to show that Hadwiger-pliability implies td-pliability.
By Observation 5.1 it suffices to show that for every k, the class A of all structures with
Hadwiger number at most k (and arbitrary signatures) is td-pliable. These are structures
whose Gaifman graphs exclude the clique Kk+1 as a minor. Their Gaifman graphs are thus
fractionally-td-fragile by Theorem 4.5. Since their Gaifman graphs do not include cliques
Kk+1 the arity of symbols with non-zero tuples is bounded by k. By Lemma 4.6, this implies
that A is td-pliable (high-arity symbols with no non-zero tuples can be ignored).

5.2 From cc-pliability to size-pliability

To show the second half of Theorem 1.5, i.e., the equivalence of td-pliability, cc-pliability, and
size-pliability (for structures with bounded signatures), it will be easier to first focus on the
latter two. Since there are only finitely many distinct signatures of bounded size and arity,
we can focus on a single fixed signature (as finite unions of pliable classes are pliable).

Since cc ≤ size, by Observation 2.9 we have that size-pliability implies cc-pliability. The
rest of this section is devoted to proving that cc-pliability implies size-pliability (for a single
fixed signature). This (and in fact equivalence of the two) would be trivial if there were only a
bounded number of distinct values of tuples, since then there can be only a bounded number
of components up to isomorphism, and isomorphic components can be merged.

Observation 5.3. For any structure A and numbers λ1, . . . , λn ∈ Q≥0, the disjoint union
λ1A ⊎ · · · ⊎ λnA is equivalent (i.e., at dopt-distance zero) to λA, where λ = λ1 + · · ·+ λn.

Proof. An overcast in one direction deterministically maps each component λiA to λA iden-
tically. An overcast in the other direction maps λA to the component λiA with probability
λi/λ.

For a structure A with components of bounded size and Q≥0-values, we can try to change
the values slightly to find a structure B at small edit distance which uses a bounded number
of different values (and then proceed as above). This works if the ratio of the maximum
value to the minimum non-zero value is bounded. If this ratio is large, we could try to
change the extremely small values to zero, hoping the edit distance is small (relative to the
extremely large values). However, this does not always work: consider structures A with few
large values and many small values (for example a structure having 2i tuples of value 2n−i,
for i = 0 . . . n). So the general case cannot be reduced to the case of finitely many distinct
values just by finding a structure close in edit distance. Nevertheless, instead of requiring the
modified structure B to have a bounded number of components up to isomorphism, it suffices
to require a bounded number of components up to rescaling (two structures B1,B2 being the
same up to rescaling if B1 = λB2 for some λ > 0). This minor weakening turns out to be
sufficient to fix our problem. We formalise this first as a statement on sequences of vectors
of bounded dimension (which will encode a sequence of components of bounded size).

Lemma 5.4. Let d ∈ N, ε > 0. There is a k such that for every sequence of vectors
v(1), . . . , v(n) ∈ Qd

≥0, there is a sequence w(1), . . . , w(n) ∈ Qd
≥0 such that for each coordinate
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i = 1, . . . , d,
∑

j=1...n |v
(j)
i − w

(j)
i | ≤ ε

∑

j=1...n v
(j)
i , and such that up to rescaling, there are

only k distinct vectors in w(1), . . . , w(n).

Proof. The proof is by induction on d. Let d ∈ N, ε > 0 and consider a sequence v1, . . . , vn ∈
Qd

≥0. For d = 1, the sequence already has only one vector up to rescaling (or two, if it contains
the zero vector), so let d ≥ 2.

Let J = {1, . . . , n}. For a subset X ⊆ J , denote massi(X) :=
∑

j∈X v
(j)
i . We focus on

the first two coordinates and in particular the ratio of the second to the first. For c ∈ R, let

J<c := {j ∈ J : v
(j)
2 < c · v(j)1 }. Define J≤c, J>c, J≥c analogously.

Let c be maximum such that mass2(J<c) ≤ ε
3 ·mass2(J). For j ∈ J<c, let wj be the vector

obtained from vj by zeroing the 2nd coordinate. The resulting difference is

∑

j∈J<c

|v(j)2 − w
(j)
2 | ≤ ε

3

∑

j∈J

v
(j)
2 .

By maximality of c we have

mass2(J≤c) >
ε

3
·mass2(J).

Observe that the left hand side can be bounded as follows:

mass2(J≤c) ≤ c ·mass1(J≤c) ≤ c ·mass1(J)

and similarly the right hand side can be bounded as follows, for c′ := c · 3d
ε2
:

ε

3
·mass2(J) ≥

ε

3
·mass2(J≥c′) ≥ c · d

ε
·mass1(J≥c′).

Altogether, this implies

c ·mass1(J) > c · d
ε
·mass1(J≥c′),

which after rearranging gives

mass1(J≥c′) <
ε

d
·mass1(J).

For j ∈ J≥c′ , let wj be the vector obtained from vj by zeroing the 1st coordinate. The

resulting difference is
∑

j∈J≥c′
|v(j)1 − w

(j)
1 | ≤ ε

d

∑

j∈J v
(j)
1 .

The only remaining vectors, in Jmid := J \ (J<c ∪ J≥c′), satisfy c · v(j)1 ≤ v
(j)
2 < c′ · v(j)1 .

We can round down their 2nd coordinate to c · v(j)1 times an integer power of eε/3. That is,
for j ∈ Jmid, let wj be the vector obtained from vj by decreasing the 2nd coordinate to

w
(j)
2 := c · eaε/3 · v(j)1 with a ∈ N maximum such that w

(j)
2 ≤ v

(j)
2 . Observe that a ≥ 0 and

since c · eaε/3 · v(j)1 ≤ v
(j)
2 ≤ c′ · v(j)1 , we have eaε/3 ≤ c′

c = 3d
ε2

and thus a ≤ 3
ε · ln(3d

ε2
). Note

also that 1 ≥ w
(j)
2

v
(j)
2

> e−ε/3, hence
|v

(j)
2 −w

(j)
2 |

v
(j)
2

≤ 1 − e−ε/3 < ε
3 , so the resulting difference is

∑

j∈Jmid
|v(j)2 − w

(j)
2 | ≤ ε

3

∑

j∈J v
(j)
2

To summarise, all vectors wj satisfy wj ≤ vj (coordinate-wise) and when limited to their

first two coordinates as

(

w
(j)
1

w
(j)
2

)

, are either multiples of ( 10 ) (if j ∈ J<c), or multiples of ( 01 )

25



(if j ∈ J≥c′), or multiples of ( 1
c·eaε/3

), for some a ∈ {0, 1, . . . ,K} for K := ⌊3ε · ln(3dε2 )⌋. The
resulting differences in the first and second coordinate, respectively, are bounded by as

∑

j∈J≥c′

|v(j)1 − w
(j)
1 | ≤ ε

d

∑

j∈J

v
(j)
1

∑

j∈J<c

|v(j)2 − w
(j)
2 |+

∑

j∈Jmid

|v(j)2 − w
(j)
2 | ≤ (

ε

3
+

ε

3
)
∑

j∈J

v
(j)
2 .

We replace the sequence v(j) with the sequence w(j) and repeat the same process for the
1st and i-th coordinate, for i = 3, . . . , d. Since each step only zeroes the 1st coordinate of
some vectors and decreases the other coordinates, the final resulting sequence w(j), when
compared to the initial sequence v(j) satisfies:

∑

j∈J

|v(j)1 − w
(j)
1 | ≤ (d− 1) · ε

d

∑

j∈J

v
(j)
1

∑

j∈J

|v(j)i − w
(j)
i | ≤ (

ε

2
+

ε

2
)
∑

j∈J

v
(j)
i for i = 2, . . . , d.

Each vector w(j) either has its 1st coordinate zeroed, or all its other coordinates are deter-

mined as w
(j)
1 times one of 2 + K possible ratios. Among vectors with w

(j)
1 6= 0 there are

thus at most (2 + K)d−1 different vectors, up to rescaling. The vectors with w
(j)
1 = 0 can

be inductively reduced as (d − 1)-dimensional vectors to w(j)′ containing k(d− 1, ε3 ) distinct
vectors up to rescaling (where k(d− 1, ε3) is the constant k obtained by inductive assumption
for d− 1 and ε

3) and satisfying

∑

j∈J

|w(j)
i − w

(j)
i

′
| ≤ ε

3

∑

j∈J

w
(j)
i ≤ ε

3

∑

j∈J

v
(j)
i .

Altogether, the difference is bounded by 2ε
3 + ε

3 = ε and the number of distinct vectors up to
rescaling is bounded by (2 +K)d−1 + k(d− 1, ε3).

Lemma 5.5. For a fixed signature σ and d ∈ N, the class of σ-structures with maximum
connected component size at most d is size-pliable.

Proof. We simply present each component Ai of A as a vector encoding the value of all
tuples (f,x) ∈ tup(Ai). The dimension of such a vector, for a component of size d, is
d′ :=

∑

f∈σ d
ar(f). Smaller components can be treated as components of size d by adding

dummy vertices and tuples.
For any ε > 0, let ε′ := ε/Cσ

1+ε/Cσ
, where Cσ = maxf∈σ ar(f)

ar(f) . The previous lemma

guarantees the existence of a number k = k(ε′, d′) such that for every σ-structure A with n
components of size at most d, the corresponding vectors v(1), . . . , v(n) are approximated by
vectors w(1), . . . , w(n) such that there are at most k distinct vectors up to rescaling and such
that, for i = 1 . . . d′,

∑

j=1...n

|v(j)i − w
(j)
i | ≤ ε′

∑

j=1...n

v
(j)
i .
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These vectors encode a σ-structure B with only at most k distinct components up to rescaling,
all of size at most d, which is hence (by Observation 5.3) equivalent to a σ-structure B′ bounded
in size by k · d. Moreover, the guarantee on ε′ allows us to bound edit distance as follows:

∑

j=1...n

|v(j)i − w
(j)
i | ≤ ε′

∑

j=1...n

v
(j)
i ≤ ε′

∑

j=1...n

(

min(v
(j)
i , w

(j)
i ) + |v(j)i − w

(j)
i |

)

(for i = 1 . . . d′), hence the edit distance (as defined in Section 2.4) is

d1(A,B) ≤ max
i=1...d′

∑

j=1...n

∣

∣

∣v
(j)
i − w

(j)
i

∣

∣

∣

min(
∑

j=1...n v
(j)
i ,

∑

j=1...nw
(j)
i )

≤ ε′

1− ε′
=

ε

Cσ
.

By Lemma 2.11, dopt(A,B
′) ≤ dopt(A,B) + dopt(B,B

′) = dopt(A,B) ≤ Cσ · d1(A,B) ≤ ε.
(While Lemma 2.11 assumes the structures to be loopless, this can be ensured by replacing
tuples with repeated elements like (f, (x1, x1, x2)), say, with (f ′, (x1, x2)) for a new symbol
f ′).

By Observation 5.1 (transitivity of pliability), we conclude that for a fixed signature σ,
if a class of σ-structures A is cc-pliable then it is also size-pliable. Thus, we have shown
equivalence of size-pliability and cc-pliability (for structures of bounded signatures).

5.3 From treedepth-pliability to size-pliability

In order to finish the proof of Theorem 1.5, it remains to show the equivalence of td- and
size-pliability. We do this by extending the above proof for cc- and size-pliability.

One of the main reasons for which treedepth is useful (and easier to work with than, say,
treewidth) is that the only way for a graph of small treedepth to be large is to have many
repeating parts, like in a large star graph (see e.g. [74, Theorem 3.1]). This implies that in a
class of graphs of bounded treedepth, homomorphic cores have bounded size. This does not
extend to weighted graphs or structures in general, but we can approximate the weights or
values as before.

Lemma 5.6. For a fixed signature σ and d ∈ N, the class of σ-structures {A : td(A) ≤ d} is
size-pliable.

Proof. We prove by induction on d that the statement holds for each signature σ. It suffices
to prove the statement for connected σ-structures of treedepth at most d. Indeed, this implies
that disconnected σ-structures of treedepth at most d are cc-pliable, which we already know
implies size-pliability.

For d = 1, each component of the Gaifman graph is a single vertex and we are done. So let
d > 1 and assume that for each signature σ and each ε > 0, there is a k = k(d− 1, σ, ε) such
that every σ-structure with treedepth ≤ d− 1 has a σ-structure of size ≤ k at opt-distance at
most ε. Let σ be a signature and A a σ-structure of treedepth d. Let G be the Gaifman graph
of A. Since it is connected, we can find a vertex v ∈ V (G) = A such that td(G− v) = d− 1.

We now define a new signature σ′ and a σ′-structure pack(A) whose Gaifman graph will be
G−v, but will contain all the information about A. Let σ′ = {(f, I) : f ∈ σ, I ⊆ {1, . . . , ar(f)}}
and ar((f, I)) := ar(f)−|I|, for (f, I) ∈ σ′. For x ∈ (A−v)ar((f,I)), let (f, I)pack(A)(x) := fA(x′)
where x′ ∈ Aar(f) is the tuple obtained from x by introducing v at positions I. Note that σ′

is bounded: |σ′| = ∑

f∈σ 2
ar(f).
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The σ′-structure pack(A) has treedepth d − 1, so by inductive assumption there is a σ′-
structure B at opt-distance at most ε with size at most k = k(d−1, σ′, ε). We define unpack(B)
to be the σ-structure with domain B ∪{v} and funpack(B)(x) := (f, I)B(x′), where I is the set
of positions in x containing v and x′ is the tuple obtained by removing these positions. It is
straightforward to check that unpack(pack(A)) is equal to A and that for any σ′-structures
A′,B′ we have dopt(unpack(A

′),unpack(B′)) ≤ dopt(A
′,B′), hence

dopt(A,unpack(B)) = dopt(unpack(pack(A)),unpack(B)) ≤ dopt(pack(A),B) ≤ ε.

Hence unpack(B) is a σ-structure at opt-distance ≤ ε from A of size ≤ k + 1.

By Observation 5.1 (transitivity of pliability), this shows that, for a class of σ-structures,
td-pliability implies size-pliability. Since td ≤ size, Observation 2.9 shows that size-pliability
implies td-pliability, thus concluding the proof of Theorem 1.5:

Corollary 5.7. A class of σ-structures is td-pliable if and only if it is size-pliable.

6 Hyperfinite classes are fractionally fragile: proof of Theo-

rem 1.6

Recall that class of graphs is if hyperfinite if for every ε > 0 there is a k ∈ N such that every
graph in the class can be turned into a graph with connected components of size at most k
by removing an at-most-ε fraction of all edges.10 A class of graphs is monotone if it is closed
under taking subgraphs. In this section, we prove the following result.

Theorem (Theorem 1.6 restated). Let G be a monotone class of graphs. The following are
equivalent:

• G is hyperfinite;

• G is fractionally-tw-fragile and has bounded degree;

• G is fractionally-cc-fragile;

• A(r)
G is cc-pliable for any r ≥ 2.

The last two bullets are shown equivalent by Lemma 4.7; the middle two bullets were shown
equivalent by Dvořák [29, Observation 15, Corollary 20]. It remains to prove their equivalence
with the first bullet point.

Lemma 6.1. Let G be a monotone class of graphs. G is hyperfinite if and only if it is
fractionally-cc-fragile.

Proof. Hyperfiniteness of a monotone class G is equivalent to hyperfiniteness of 0-1-edge
weighted graphs in G:

∀ε>0∃k∀G∈G∀w : E(G)→{0,1}∃F⊆E(G) w(F ) ≤ εw(E(G)) and cc(G− F ) ≤ k.

10In other work, the definition of hyperfinite often considers the number of removed edges divided by the
total number of vertices. However, they only deal with bounded degree graphs (in which the number of edges
is linear in the number of vertices), which makes the two definitions equivalent.
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Hence it is trivially implied by the edge version of fractional-cc-fragility (which allows arbitrary
nonnegative weights) in Lemma 4.4. It remains to show the other direction.

By definition of hyperfiniteness, for every ε > 0 there is a k = k(ε) such that for all
graphs G ∈ G, one can remove a set of edges F with |F | ≤ ε|E(G)| so that cc(G − F ) ≤ k.
Observe that graphs in G have degree bounded by ∆ := 2k(12 ); otherwise, a graph with degree
≥ 2k(12 ) + 1 would contain a star with that many edges as a subgraph and removing half of
these edges always leaves a component with at least k(12 ) + 1 edges and vertices.

We aim to show that

∀ε>0∃k∀G∈G∀w : E(G)→Q≥0
∃F⊆E(G) w(F ) ≤ εw(E(G)) and cc(G− F ) ≤ k.

For ε > 0, let ε′ be chosen later and let k′ = k(ε′). Let G ∈ G and w : E(G) → Q≥0. We want
to find a set F ⊆ E(G) such that w(F ) ≤ εw(E(G)) and cc(G− F ) ≤ k′. Note that our task
would be trivial if the weights of all edges were within a constant factor α of each other: just
set ε′ = ε

α , find F ⊆ E(G) such that |F | ≤ ε′|E(G)| and cc(G − F ) ≤ k′ and conclude that
w(F ) ≤ αε′w(E(G)) = εw(E(G)).

In general, let us partition the edges of G into buckets depending on their weight: for i ∈ Z,
let Bi := {e ∈ E(G) |

(

ε
6∆

)i ≥ w(e) >
(

ε
6∆

)i+1} (edges with weight zero can be removed
without loss of generality).11 For L := ⌈3ε ⌉, we will remove every L-th bucket from G. That
is, for j ∈ {0, . . . , L−1}, let B′

j :=
⋃

i∈ZBiL+j . Let j
∗ ∈ {0, . . . , L−1} be such that w(B′

j∗) is

minimum; since B′
0∪· · ·∪B′

L−1 is a partition of E(G), w(B′
j∗) ≤ 1

Lw(E(G)) ≤ ε
3w(E(G)). We

can thus remove the edges B′
j∗ from G. Since this removes every L-th bucket, the remaining

edges are partitioned into blocks Ci := BiL+j∗+1∪ · · · ∪BiL+j∗+L−1 of L−1 buckets for i ∈ Z.
Each block contains weights within a constant factor of each other: min{w(e) : e ∈ Ci} ≥
(

ε
6∆

)L−1 · max{w(e) : e ∈ Ci}. Moreover, since there is a gap of one bucket in between one
block and the next, max{w(e) : e ∈ Ci+1} < ε

6∆ ·min{w(e) : e ∈ Ci}.
The latter property allows us to disconnect the blocks from each other. Indeed, for each

Ci with increasing i (starting from the smallest i such that Ci is non-empty), we shall remove
all remaining edges on the boundary of Ci:

Fi := {e : e ∈ Cj for some j > i, e shares a vertex with some e′ ∈ Ci}.

Since |Fi| ≤ 2∆|Ci| and max{w(e) : e ∈ Fi} < ε
6∆ · min{w(e) : e ∈ Ci}, we have w(Fi) <

ε
3w(Ci). In total, for F :=

⋃

i∈Z Fi, we have w(F ) < ε
3w(E(G)). For all i ∈ Z, the edges of

Ci − F are disjoint from edges of Cj − F for all j > i. Since the sets Ci − F partition edges
of G−B′

j∗ − F , this means that every connected component of G−B′
j∗ − F is contained in

one of the edge sets Ci − F .

Finally, since min{w(e) : e ∈ Ci − F} ≥ α ·max{w(e) : e ∈ Ci − F} for α :=
(

ε
3∆

)L−1
, we

have reduced our problem to the trivial case when weights are all within a constant factor of
each other. That is, let ε′ := αε

3 . For each i ∈ Z, let Gi be the subgraph of G−B′
j∗−F formed

from connected components contained in Ci − F . By assumption, there is a set F ′
i ⊆ E(Gi)

such that |F ′
i | ≤ ε′|E(Gi)| and cc(Gi − F ′

i ) ≤ k(ε′) = k′. Then w(F ′
i ) ≤ max{w(e) : e ∈

E(Gi)}·|F ′
i | ≤ 1

α ·min{w(e) : e ∈ E(Gi)}·ε′ · |E(Gi)| ≤ ε′

αw(E(Gi)) =
ε
3w(E(Gi)). In total, for

F ′ :=
⋃

i∈Z F
′
i we have w(B

′
j∗∪F∪F ′) ≤ ( ε3+

ε
3+

ε
3)w(E(G)) and cc(G−B′

j∗−F−F ′) ≤ k′.

11Note that all but a finite number of Bi’s will be empty.
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7 Dense graphs are pliable: proof of Theorem 1.3

Our goal is to prove Theorem 1.3.

Theorem (Theorem 1.3 restated). Let c > 0 and let A be a class of graphs with at least cn2

edges. Then A is tw-pliable. Consequently, Max-Hom(A,−) admits a PTAS.

In order to do so, we prove the following result.

Theorem 7.1. Let c > 0. The class of (unweighted, undirected) graphs with at least cn2

edges is size-pliable.

Theorem 7.1 implies Theorem 1.3. Indeed, since tw ≤ size, by Observation 2.9 we have
size-pliability implies tw-pliability. By Theorem 1.1, tw-pliability implies a PTAS.

We start with simple examples of dense graphs. Observe that large cliques can be ar-
bitrarily well approximated by cliques of constant size ⌈2ε ⌉ (up to normalising total edge
weights).

Example 7.2. Let 0 < ε < 1 and let n, k ≥ 2
ε . Then dopt(Kn, λKk) ≤ ε, for λ =

(n
2

)

/
(k
2

)

.

Proof. For n, k ≥ 2, define an overcast ω by taking a random function V (Kn) → V (Kk) (each
vertex is placed independently uniformly at random). Then for each e ∈ E(Kk),

E
g∼ω

|g−1(e)| =
∑

e′∈E(Kn)

E
g∼ω

[g(e′) = e] =

(

n

2

)

2

k2
= λ ·

(

k

2

)

· 2

k2
= (1− 1

k
)λ.

ThereforeKn�(1− 1
k )λKk. Symmetrically λKk�(1− 1

n)Kn. Since 1−x ≥ e−2x for 0 ≤ x ≤ 1
2 ,

this means dopt(Kn, λKk) ≤ 2
min(n,k) . Consequently if n, k ≥ 2

ε , then dopt(Kn, λKk) ≤ ε.

In particular, this means the class A consisting of all clique graphs is size-pliable. This
corresponds to an easy PTAS for graph Max-Hom(A,−): the maximum graph homomorphism
from Kn to G is well approximated by finding the maximum graph homomorphism from a
constant size Kk to G and mapping Kn randomly to the resulting ≤ k vertices in G. The
situation is very different for Densest Subgraph problems, because they disallow choosing two
equal vertices in G (see Observation 8.2).

As another important example, consider Erdős-Rényi random graphs G(n, p) (for constant
p ∈ (0, 1); each pair in

(n
2

)

becomes an edge independently with probability p). Any two such
graphs are similar to each other (and in fact to pKn, as well as to λKk for constant k and
suitable λ); more precisely, we have:

Example 7.3. Let p, ε > 0 be constants. Let G1, G2 be independent Erdős-Rényi random
graphs G(n, p). Then Pr[dopt(G1, G2) < ε] → 1 as n → ∞.

Proof sketch. Let k be a sufficiently large constant depending on ε only. It is sufficient to prove
that Pr[dopt(G1, λKk) <

ε
2 ] → 1 as n → ∞. The rescaling factor here is λ := p

(

n
2

)

/
(

k
2

)

. The
number of edges of G(n, p) is concentrated around p

(

n
2

)

, so just as before a random function

gives G(n, p)� (1− 1
k )λKk � e−ε/2λKk with high probability (tending to 1 as n → ∞).

For the other direction, we use the fact that the number of k-cliques in G(n, p) is con-

centrated around the mean
(n
k

)

p(
k
2) and, more strongly, the number of k-cliques containing

any given edge of G(n, p) (conditioned on it being an edge) is concentrated around the mean
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(n−2
k−2

)

p(
k
2)−1. The concentration is good enough that with high probability, every edge of

G(n, p) is contained in (1± ε
4)
(

n−2
k−2

)

p(
k
2)−1 k-cliques (see e.g. [84]). Thus if we take ω by map-

ping λKk injectively to a random k-clique in G(n, p), then w.h.p. for each edge e of G(n, p)
we have

E
g∼ω

|g−1(e)| ≥ (1− ε

4
)

(

n− 2

k − 2

)

p(
k
2)−1/

(

n

k

)

p(
k
2) = (1− ε

4
)
k(k − 1)

n(n− 1)
p−1 = (1− ε

4
)λ−1.

Thus λKk � e−ε/2G1 and consequently dopt(G1, λKk) ≤ ε
2 w.h.p.

To show Theorem 1.3, we extend the above informal proof to any class of dense graphs.
This is possible because of Szemerédi’s regularity lemma [85], which, very roughly speaking,
guarantees that all such graphs are random-like. This allows to provide similar bounds on the
number of k-cliques containing any given edge, a fact known as the extension lemma, though
we prove a variant that is somewhat tighter than usual.

Remark 7.4. Note that the above proof sketch does not work for random tournaments

(orientations of cliques): if we try to approximate them by the small graph 1
2

↔
Kk (each arc

taken with weight 1
2), then every overcast from it to a tournament will always lose at least half

of the total weight. If instead we tried to take a small random tournament, no overcast to it
from the big random tournament would work. Indeed, Lemma 2.19 in Section 2.6 shows the
class of tournaments is not pliable (neither are “random tournaments”, i.e., the proof can be
adapted to show that any class which contains a random tournament with constant probability
cannot be pliable) and in fact the problem Max-Hom(A,−) for the class of tournaments A
is hard to approximate, as we show in Lemma 8.4 in Section 8. This is why, even though
variants of the regularity lemma exist for directed graphs and even more general structures, we
limit our discussion to undirected graphs (the proofs do extend to [0, 1]-weighted undirected
graphs, however).

In the rest of this section, we will prove Theorem 1.3. While we only prove this for un-
weighted graphs, it will be notationally convenient to treat them as {0, 1}-weighted graphs,
with wG(u, v) := [uv ∈ E(G)]. For sets U, V ⊆ V (G), we denote by wG(U, V ) :=

∑

u∈U

∑

v∈V wG(u, v)
the number of edges between U and V (or their total weight). The regularity lemma states
that every graph can be partitioned into a bounded number of parts so that the bipartite
graph between every two parts is random-like in the following strong sense:

Definition 7.5. A bipartite graph G = (V1, V2, E) of density d := wG(V1,V2)
|V1||V2|

is ε-homogeneous
if for all W1 ⊆ V1, W2 ⊆ V2,

wG(W1,W2) = d|W1||W2| ± ε|V1||V2|.

For an n-vertex graph G and an integer k, an ε-regular k-partition of G is a parti-
tion V1, . . . , Vk of V (G) such that |Vi| ∈ {⌊nk ⌋, ⌈nk ⌉} for i ∈ [k] and the bipartite graph

(Vi, Vj , E(G) ∩ Vi × Vj) is ε-homogeneous12, for all ij ∈
([k]
2

)

.

We use the following strong version of Szemerédi’s regularity lemma (see Theorem 2.2
in [79], Lemma 5.2. in [67], or Chapter 9 in [66] for a detailed discussion).

12The usual statement of the regularity lemma replaces ε-homogeneity (with additive error) by a notion
called ε-regularity (with relative error, but holding only for |Wi| ≥ ε|Vi|). The two are however easily shown
to be equivalent, up to a change from ε to ε1/3.
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Theorem 7.6 (Regularity Lemma). For every ε1 > 0 and every non-decreasing f : N → N,
there is an integer k such that for every sufficiently large graph G, one can add/remove
ε1|V (G)|2 edges to obtain a graph which admits a 1

f(k′) -regular k′-partition for some 1
ε1

≤
k′ ≤ k.

Another way to view this is to define, for a partition P = (V1, . . . , Vk) of a graph G,
the quotient graph G/P as the weighted graph with vertex set [k] and weights wG/P

(i, j) :=

wG(Vi, Vj) for (i, j) ∈ [k]2. The quotient graph for an ε-regular partition is then a graph
of bounded size that is close to the original graph: the notion of closeness arising from the
definition of ε-homogeneity is known as cut distance (see Chapter 8 in [66]), but later we show
the same holds for opt-distance:

Theorem 7.7. Let G be a graph with density c := |E(G)|
n2 . For 0 < ε0 < 1, suppose G has an

ε-regular k-partition P = (V1, . . . , Vk) with
1
k ≤ c

10
ε0

1+ε0
and ε ≤

(

1
k

)8k2
. Then dopt(G,G/P ) ≤

ε0.

With this view it is easy to see that classes of dense graphs are pliable. Formally:

Proof of Theorem 1.3 assuming Theorem 7.7. Let A be a class of graphs with ≥ cn2 edges.
We want to show that for every ε0 > 0 there is a k such that every G ∈ A has a weighted
graph H of size at most k with dopt(G,H) ≤ ε0.

For ε0 > 0, let ε1 := c
10 · ε0/2

1+ε0/2
. Note that we can assume that all sufficiently large

graphs G ∈ A have no loops: if |V (G)| ≥ 1
ε1
, then the number of loops is at most |V (G)| ≤

1
c|V (G)| |E(G)| ≤ ε1

c |E(G)|. Hence by removing them we obtain a graphG′ such that d1(G,G′) ≤
|E(G)|−|E(G′)|

min(|E(G)|,|E(G′)|) ≤
ε1/c

1−ε1/c
≤ ε0/20. By Lemma 2.11, dopt(G,G′) ≤ ε0/5 (the direction G�G′

is trivial, while the other direction only requires G′ to have no loops).
Let f(k) := k8k

2
. By the Regularity Lemma (Theorem 7.6), there is an integer k ≥ 1

ε1

such that for every graph G of size > k, one can add/remove ε1|V (G)|2 edges to obtain a
graph H which admits an 1

f(k′) -regular k
′-partition P for some 1

ε1
≤ k′ ≤ k. If G ∈ A, then G

has at least cn2 edges, so d1(G,H) ≤ ε1
c−ε1

≤ ε0/20. Since we can assume that G is loopless,
by Lemma 2.11, dopt(G,H) ≤ ε0/5. By Theorem 7.7, dopt(H,H/P) ≤ ε0/2. Hence H/P is
the graph of size at most k we seek, at opt-distance at most ε0 from G.

The strategy of the proof of Theorem 7.7 is very similar to Example 7.3. One direction is
trivial: an overcast from G to G/P is given simply by deterministically mapping all of Vi to i,
for i ∈ [k]. For the other direction, we will take a subgraph F of G/P obtained by removing
edges of small weight (keeping F close to G/P ) and removing weights, and then map G/P to a
random copy of F in G. We need to estimate the number of such copies (this is known as the
counting lemma) and, more generally, the number of such copies containing any given edge
of G (the extension lemma). Both are standard lemmas in the theory of dense graph limits,
in particular our proof of the counting lemma mimics Lemma 10.22 in [66]. However, we will
prove a version of the extension lemma with somewhat tighter bounds than usual (depending
on all

(k
2

)

edge densities between parts of the regularity partition).

For a graph F on vertex set [k] := {1, . . . , k}, we will treat F as a subset of
([k]
2

)

. For
a partition P = (V1, . . . , Vk) of a graph G, a P-map is a function g : [k] → V (G) such that
g(i) ∈ Vi for all i ∈ [k]. We denote homg(F,G) :=

∏

ij∈F wG(g(i), g(j)); for {0, 1}-weighted
graphs, this is equal to 1 if g is a homomorphism from F to G and 0 otherwise.
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Let us first observe two consequences of ε-homogeneity. First, the notion can be extended
from subsets W1 ⊆ V1 to any function f : V1 → [0, 1] simply by considering subsets where the
function takes at least a given value (here ‖f‖1 :=

∑

x f(x)):

Observation 7.8. Let G = (V1, V2, E) be ε-homogeneous of density d. Then for every
f : V1 → [0, 1] and g : V2 → [0, 1],

∑

x1∈V1

∑

x2∈V2

f(x1)g(x2)wG(x1, x2) = d‖f‖1‖g‖1 ± ε|V1||V2|.

Proof. For y ∈ [0, 1], let V y
1 := {x ∈ V1 : f(x) ≥ y} and define V y

2 analogously for g. Notice

that f(x) =
∫ 1
0 [y ≤ f(x)] dy =

∫ 1
0 [x ∈ V y

1 ] dy. Hence

∑

x1∈V1

∑

x2∈V2

f(x1)g(x2)wG(x1, x2) =

∫ 1

0

∫ 1

0

∑

x1∈V1

∑

x2∈V2

[x1 ∈ V y1
1 ][x2 ∈ V y2

2 ]wG(x1, x2) dy1 dy2 =

∫ 1

0

∫ 1

0
wG(V

y1
1 , V y2

2 ) dy1 dy2 =

∫ 1

0

∫ 1

0

(

d|V y1
1 ||V y2

2 | ± ε|V1||V2|
)

dy1 dy2 =

d ·
(

∫ 1

0
|V y1

1 | dy1
)(

∫ 1

0
|V y2

2 | dy2
)

± ε|V1||V2|.

Since

∫ 1

0
|V y

1 |dy =

∫ 1

0

∑

x∈V1

[y ≤ f(x)]dy =
∑

x∈V1

f(x) = ‖f‖1 and analogously for g, the claim

follows.

Second, while we cannot say much about any one fixed vertex, we can make similar
approximations for most vertices:

Observation 7.9. Let G = (V1, V2, E) be ε-homogeneous with density d. For every g : V2 →
[0, 1], there are at least (1 − 2

√
ε)|V1| vertices x1 in V1 such that

∑

x2
g(x2)wG(x1, x2) =

d‖g‖1 ± √
ε|V2|.

Proof. Let W−
1 be the set of those x1 in V1 for which the sum is too small:

∑

x2
g(x2)wG(x1, x2) < d‖g‖1 −

√
ε|V2|.

Let f : V1 → [0, 1] be the characteristic function of W−
1 . Then

∑

x1

∑

x2
f(x1)g(x2)wG(x1, x2) < ‖f‖1 · (d‖g‖1 −

√
ε|V2|) .

By Observation 7.8, this implies ‖f‖1 ·
√
ε|V2| < ε|V1||V2|. Hence |W−

1 | = ‖f‖1 <
√
ε|V1|.

We can define and bound W+
1 analogously. Then V1 \ (W−

1 ∪ W+
1 ) is a set of size at least

(1− 2
√
ε)|V1| as claimed.

The counting lemma says that the number of P-maps that are homomorphisms from F
to G is close to what one would expect in a purely random graph with the same densities.
Note that the number of all P-maps g : [k] → V (G) is exactly

∏

i∈[k] |Vi|.
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Lemma 7.10 (Counting Lemma). Let P = (V1, . . . , Vk) be an ε-regular k-partition of an

n-vertex graph G. Let dij :=
wG(Vi,Vj)
|Vi||Vj |

. For each F ⊆
([k]
2

)

,

∑

g

homg(F,G) =
(

∏

i∈[k]

|Vi|
)(

∏

ij∈F

dij ± ε|F |
)

,

where the sum is over all P-maps g : [k] → V (G).

Proof. Let us write
∑

(xi)i∈[k]
as a shorthand for

∑

x1∈V1
· · ·∑xk∈Vk

. We wish to approximate

∑

(xi)i∈[k]

∏

ij∈F

wG(xi, xj).

We do so by replacing each factor wG(xi, xj) by its average value dij , one by one. That is, we
prove for all subsets F ′ ⊆ F by induction that

∑

(xi)i∈[k]

∏

ij∈F

wG(xi, xj) =
∑

(xi)i∈[k]

∏

ij∈F−F ′

wG(xi, xj)
∏

ij∈F ′

dij ± |F ′| · ε
∏

i∈[k]

|Vi|. (*)

Clearly this is true initially for F ′ = ∅ and eventually by reaching F ′ = F we will have
proved that

∑

(xi)i∈[k]

∏

ij∈F

wG(xi, xj) =
∑

(xi)i∈[k]

∏

ij∈F

dij ± |F | · ε
∏

i∈[k]

|Vi|;

which proves the claim, as
∑

(xi)i∈[k]
1 =

∏

i∈[k] |Vi|.
To prove the induction step, suppose (*) holds for some F ′ ⊂ F and let ab ∈ F − F ′. Let

w′
G(xi, xj) denote wG(xi, xj) if ij 6∈ F ′ and dij otherwise. Then the left-hand-side in (*) is

∑

(xi)i∈[k]

∏

ij∈F

w′
G(xi, xj) =

∑

(xi)i∈[k]−a−b

h
∑

xa

∑

xb

f(xa)g(xb)w
′
G(xa, xb),

where for any fixed choice of (xi)i∈[k]−a−b, we let

h :=
∏

ij∈F−F ′

i 6=a,j 6=b

w′
G(xi, xj), f(xa) :=

∏

ij∈F−F ′

i=a,j 6=b

w′
G(xa, xj), g(xb) :=

∏

ij∈F−F ′

i 6=a,j=b

w′
G(xi, xb).

Since h, f, g ≤ 1, the claim then follows from Observation 7.8: replacing wG(xa, xb) with dab
adds an error of at most

∑

(xi)i∈[k]−a−b
h·ε|Va||Vb| ≤ ε|Va||Vb|·

∑

(xi)i∈[k]−a−b
1 = ε

∏

i∈[k] |Vi|.

Lemma 7.11 (Extension Lemma). Let P = (V1, . . . , Vk) be an ε-regular k-partition of an n-

vertex graph G. Let dij :=
wG(Vi,Vj)
|Vi||Vj |

. For each F ⊆
([k]
2

)

and each ab ∈ F , all but 2k
√
ε|Va||Vb|

edges xaxb ∈ Va × Vb satisfy

∑

g

homg(F,G) =
(

∏

i∈[k]−a−b

|Vi|
)

·
(

wG(xa, xb) ·
∏

ij∈F−ab

dij ± √
ε|F |

)

where the sum is over all P-maps g : [k] → V (G) such that g(a) = xa and g(b) = xb.
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Proof. The argument is the same as in the counting lemma, except that edges incident to a, b
have to be handled differently. First note that for every c ∈ [k]−a−b and every fixed xb ∈ Vb,
by Observation 7.9 (with g(xc) := wG(xc, xb)), the following holds for all but at most 2

√
ε|Va|

vertices xa in Va:

∑

xc

wG(xa, xc)wG(xc, xb) = dac

(

∑

xc

wG(xc, xb)
)

±√
ε|Vc|. (**)

For each c ∈ [k] − a − b and each xb ∈ Vb, we will ignore those edges going to xa ∈ Va that
fail (**).

Similarly for each c ∈ [k]− a− b, by Observation 7.9 (with g(xc) := 1) the following holds
for all but at most 2

√
ε|Vb| vertices xb ∈ Vb:

∑

xc

wG(xb, xc) = dbc|Vc| ±
√
ε|Vc|. (***)

We ignore all edges xaxb ∈ E(Va, Vb) incident to xb for which (***) fails. Thus for all but
≤ 2 · k · |Vb| · 2

√
ε|Va| edges xaxb ∈ E(Va, Vb), (**) and (***) hold for all c ∈ [k]− a− b.

Fix any such xa ∈ Va, xb ∈ Vb. We wish to approximate

∑

(xi)i∈[k]−a−b

∏

ij∈F

wG(xi, xj) =

wG(xa, xb) ·
∑

(xi)i∈[k]−a−b

∏

ij∈F−ab

wG(xi, xj) = . . .

Just as in the proof of the counting lemma, we replace factors wG(xi, xj) by dij one by one.
We first do this for pairs in F0 := {ij ∈ F | i, j 6= a, b}, since the argument works without
change, incurring an error of ±ε|F0|

∏

i∈[k]−a−b |Vi| (we denote this by ≃ for simplicity and
sum up the errors at the end of the proof). Since dij does not depend on the choice of
xi ∈ Vi, xj ∈ Vj , we can rearrange:

· · · ≃ wG(xa, xb)
(

∏

ij∈F0

dij

)

·
∑

(xi)i∈[k]−a−b

∏

i∈[k]−a−b

wG(xa, xi)wG(xi, xb) = . . .

Then, for each c ∈ [k] − a − b we can replace ac by isolating the factors that depend
on xc and applying (**) (as before w′

G(xa, xi) denotes either wG(xa, xi) or dai depending on
whether we have already replaced ai):

· · · = wG(xa, xb)
(

∏

ij∈F0

dij

)

·
∑

xc

wG(xa, xc)wG(xc, xb) ·
∑

(xi)i∈[k]−a−b−c

∏

i∈[k]−a−b−c

w′
G(xa, xi)wG(xi, xb) ≃ . . .

Having thus replaced all edges ac for c ∈ [k]− a− b, the only remaining edges are of the form
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ib for i ∈ [k]− a− b, so by denoting F1 := {ij ∈ F | i, j 6= b} the expression becomes:

· · · ≃ wG(xa, xb)
(

∏

ij∈F1

dij

)

·
∑

(xi)i∈[k]−a−b

∏

i∈[k]−a−b

wG(xi, xb) =

wG(xa, xb)
(

∏

ij∈F1

dij

)

·
∏

i∈[k]−a−b

(

∑

xi∈Vi

wG(xi, xb)
)

≃

wG(xa, xb)
(

∏

ij∈F

dij

)

·
∏

i∈[k]−a−b

|Vi|,

where the last approximation follows from (***). For each of the |F | approximations used,
the incurred additive error on the whole expression was at most ±√

ε
∏

i∈[k]−a−b |Vi|.

We are now ready to prove Theorem 7.7. The proof strategy was outlined above: map
G/P to a random copy of F in G, where F marks heavy-enough edges of G/P .

Proof of Theorem 7.7. Let G be a graph with density c := E(G)
n2 . Let ε0 < 1, 1

k ≤ c
10

ε0
1+ε0

and ε ≤
(

1
k

)8k2
, and suppose G has an ε-regular k-partition P = (V1, . . . , Vk). We claim that

dopt(G,G/P ) ≤ ε0. As mentioned above, G � G/P holds trivially, so it remains to show an
overcast from G/P to e−ε0G.

Let dij :=
wG(Vi,Vj)
|Vi||Vj |

for ij ∈ [k]2. Let F ⊆
([k]
2

)

be the set of edges ij such that i 6= j and

dij ≥ 1
k . Note that

∏

ij∈F dij ≥ ( 1k )
|F | ≥ ( 1k )

k2 ≥ ε1/8. Let G′ be the subgraph of G obtained
by removing:

• E(G[Vi]), for i ∈ [k] (the total weight removed in this step is ≤ k
(

n
k

)2
)

• EG(Vi, Vj), for ij 6∈ F (their total weight is ≤ k2 · 1
k ·

(

n
k

)2
)

• edges of weight < ε1/8 (if G is [0, 1]-weighted; their total weight is ≤ ε1/8n2)

• edges xaxb ∈ Va×Vb for which the Extension Lemma 7.11 does not hold, for each ab ∈ F
(their total weight is ≤ |F | · 2k√ε

(

n
k

)2
).

The total weight of removed edges is

‖G‖1 − ‖G′‖1 ≤ n2(
1

k
+

1

k
+ ε1/8 + 2k

√
ε) ≤ n2 · 5

k
.

By our assumption on k, 5
ck ≤ 1

2
ε0

1+ε0
< 1. Since ‖G‖1 ≥ cn2, d1(G,G′) ≤ ‖G‖1−‖G′‖1

min(‖G‖1,‖G′‖1)
≤

n2· 5
k

n2(c− 5
k
)
= 5/ck

1−5/ck ≤ ε0/2. Therefore, by Lemma 2.11, G′ � e−ε0/2G (this direction requires

only G′ to be loopless, which is true because we removed E(G[Vi]) for all i). Thus it remains
to show that G/P � e−ε0/2G′.

We define an overcast ω from G/P to (1− ε0
1+ε0

)G′ as follows: every P-map g : [k] → V (G)
is taken with probability proportional to homg(F,G); that is, ω(g) := homg(F,G)/N where
by the Counting Lemma 7.10, the normalisation factor is (using

∏

ij∈F dij ≥ ε1/8):

N :=
∑

g

homg(F,G) =
(

∏

i∈[k]

|Vi|
)(

∏

ij∈F

dij ± ε|F |
)

≤
(

∏

i∈[k]

|Vi|
)(

∏

ij∈F

dij

)

(1 + ε7/8k2).
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To verify that ω is indeed an overcast, we need to check that for each edge uv of G′

E
g∼ω

wG/P
(g−1(uv)) ≥ (1− ε′)wG(u, v).

Let a, b ∈ [k] be such that u ∈ Va and v ∈ Vb. By the Extension Lemma 7.11, since we
removed from G′ edges that do not satisfy it and edges with wG(u, v) < ε1/8, we have:

N · E
g∼ω

wG/P
(g−1(uv)) =

∑

g : g(a)=u,g(b)=v

homg(F,G)wG/P
(a, b) =

wG(Va, Vb)
∑

g : g(a)=u,g(b)=v

homg(F,G) =

dab|Va||Vb|
(

∏

i∈[k]−a−b

|Vi|
)(

wG(u, v)
∏

ij∈F−ab

dij ± √
ε|F |

)

≥

(

∏

i∈[k]

|Vi|
)(

wG(u, v)
∏

ij∈F

dij − √
εk2

)

≥

(

∏

i∈[k]

|Vi|
)

wG(u, v)
(

∏

ij∈F

dij

)

(1− ε1/4k2).

(The last inequality follows from wG(u, v) ·
∏

ij∈F dij ≥ ε1/8 · ε1/8 = ε1/4). Dividing by the
upper bound on N , we conclude:

E
g∼ω

wG/P
(g−1(uv)) ≥ wG(u, v)

1 − ε1/4k2

1 + ε7/8k2

The ratio here can be bounded quite brutally:

≥ 1− ε1/4k2

1 + ε1/4k2
≥ 1− 2ε1/4k2 ≥ 1− 2

k
≥ 1− 1

2

ε0
1 + ε0

≥ 1

1 + ε0/2
≥ e−ε0/2.

This concludes the proof that G/P � e−ε0/2G′ and hence dopt(G/P , G) ≤ ε0.

8 Hardness of approximation

We show that Max-Hom(A,−), where A is the class of all tournaments (orientations of
cliques), has no PTAS. This holds under theGap Exponential Time Hypothesis (Gap-ETH) [69,
26] which states that no 2o(n)-time algorithm can distinguish between a satisfiable 3SAT for-
mula and one which is not even (1− ε)-satisfiable for some constant ε > 0.

In fact we only require the following weaker conjecture:

Conjecture 8.1. There exists an ε > 0 such that given a {0, 1}-valued Max-2-CSP instance
with k variables and alphabet size n no f(k) · nO(1) time algorithm can distinguish between
the following two cases:

• there is an assignment satisfying every constraint;

• no assignment satisfies more than (1− ε) constraints.
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Gap-ETH implies Conjecture 8.1: this follows from a proof by Chalermsook et al. [12],
in fact with a much larger approximation gap, which was further improved by Dinur and
Manurangsi [28]. Direct proofs for the above simpler version can be found in [65] and [9,
Appendix A]. Lokshtanov et al. [65] moreover propose the Parameterised Inapproximability
Hypothesis, stating that the above promise problem is W[1]-hard.

The problem can be rephrased as a minor variation of Densest-k-Subgraph (sometimes
known as Maximum Colored Subgraph Isomorphism):

Observation 8.2. Conjecture 8.1 is equivalent to the following. There is an ε > 0 such that
no f(k) ·nO(1) time algorithm can, given k, a graph G on n vertices, and a proper k-colouring
c of it, distinguish between the following two cases:

• G contains a k-clique v1, . . . , vk (without loss of generality c(vi) = i);

• every k-tuple v1, . . . , vk with c(vi) = i induces a subgraph on < (1− ε)
(k
2

)

edges in G.

(Indeed, the k variables in the Max-2-CSP correspond to v1, . . . , vk, the set of vertices
coloured i is the alphabet for variable vi, and the edges between two colour sets define a
constraint). As a side note, we remark that an inspection of the proof of [12, Theorem 5.12]
gives that Gap-ETH implies that the above is hard even if the soundness case is strengthened
as follows, for any constant δ > 0:

• every k-tuple v1, . . . , vk (regardless of colours) induces a subgraph on < δ
(k
2

)

edges in
G.

The problem in Observation 8.2 is almost a maximum graph homomorphism problem on
cliques, except that, crucially, the mapping i 7→ vi is forced to be injective. To show that
Max-Hom(A,−) is hard for the class A of tournaments, intuitively, we use the fact that a
map from a random tournament to itself must map most arcs to themselves (and is hence
approximately injective). This is formalised as follows.

Lemma 8.3. For every δ > 0, there exists constants 0 < λ < δ and N ≥ 1 such that the
following holds. For every k ≥ N , there is an orientation A of the clique of size k such that
every mapping g : A → A of A to itself with value(g) ≥ (1−λ)

(k
2

)

must map at least (1−δ)
(k
2

)

arcs to themselves.

Proof. For δ > 0, denote m :=
(k
2

)

and choose N ≥ 1 such that k log2 k ≤ δ
3m, for all k ≥ N .

Let λ > 0 be constant to be chosen later. Let A be a random orientation of the clique of size
k with k ≥ N (each edge is independently oriented in either direction with probability 1

2).
We will show that with positive probability A admits no map g : A → A to itself with the
properties that value(g) ≥ (1− λ)m but less than (1− δ)

(k
2

)

arc of A are mapped identically
by g.

If a map as above existed, it would imply the existence of a set F of arcs of A with
|F | ≤ λm and a mapping g : A → A such that g maps all the arcs of A − F correctly, and
such that g maps less than (1 − δ)

(

k
2

)

vertex pairs identically. Let us bound the probability

that there exist such F, g. The number of possible F is ≤ ∑λm
i=0

(m
i

)

≤ 2H(λ)m. The number

of possible g is ≤ kk. For fixed F, g, if g maps less than (1 − δ)
(k
2

)

vertex pairs identically,

then the number of remaining arcs of A−F is at least (1− λ)m− (1− δ)
(k
2

)

= (δ− λ)m; the

probability that all these arcs are mapped correctly by g is at most 1
2

(δ−λ)m/2
(each of these
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arcs is mapped correctly with probability 1
2 ; since the function g forms cycles on the set of

arcs, the events for individual arcs are not independent, but if we ignore one arc from each
cycle they are; since cycles have length at least 2, we ignore at most 1

2 of these arcs). Hence
in total the probability that some such F, g exist is at most

2H(λ)m · kk · 2−(δ−λ)m/2 = 2−( δ
2
−λ

2
−H(λ))m · 2k log2 k ≤ 2−( δ

2
−λ

2
−H(λ)− δ

3
)m.

This is less than 1 by taking λ small enough so that δ
6 − λ

2 −H(λ) > 0.

This allows us to make the reduction.

Lemma 8.4. For every δ > 0, there exists constants 0 < λ < δ and N ≥ 1 such that the
following holds. Given k ≥ N , a graph G on n vertices, and a proper k-colouring c of G, we
can compute in f(k) · nO(1) time an orientation A of the clique of size k and a directed graph
B such that

• if G contains a clique of size k, then opt(A,B) =
(k
2

)

,

• if every v1, . . . , vk in G with c(vi) = i induce < (1 − 2δ)
(

k
2

)

edges, then opt(A,B) <

(1− λ)
(k
2

)

.

Proof. For δ > 0, let λ and N be as in Lemma 8.3. Given k ≥ N , G and a proper k-colouring
c : V (G) → {1, . . . , k} of G, we start by computing an orientation A of the clique on the set
of colours {1, . . . , k} as in Lemma 8.3 (in time depending on k only). The directed graph B

has vertex set V (G) and (u, v) is an arc in B iff {u, v} ∈ E(G) and (c(u), c(v)) is an arc in A.
Suppose that G contains a clique {v1, . . . , vk} of size k. Without loss of generality c(vi) = i.
Then opt(A,B) =

(k
2

)

via the mapping h(i) := vi.

Assume now that opt(A,B) ≥ (1−λ)
(k
2

)

, so there is a mapping g : A → B with value(g) ≥
(1−λ)

(

k
2

)

. Note that c : B → A is a homomorphism from B to A. It follows that the mapping

c ◦ g : A → A from A to itself has value(c ◦ g) ≥ (1−λ)
(k
2

)

. By Lemma 8.3, we have that c ◦ g
maps at least (1− δ)

(

k
2

)

arcs to themselves. Let F be the set of arcs that are not mapped to

themselves by c◦g (so |F | ≤ δ
(k
2

)

). Let F ′ be the set of arcs of A that are mapped incorrectly

by g (so |F ′| ≤ λ
(k
2

)

). The remaining arcs, A − F − F ′, satisfy the following: their number

is at least (1 − δ − λ)
(k
2

)

≥ (1 − 2δ)
(k
2

)

; they are mapped by g to some arcs in B and hence
to some edge in G; and if i ∈ {1, . . . , k} is an endpoint of any of these arcs, then c(g(i)) = i.
We can hence take vi := g(i) if i is not isolated in A− F − F ′ and take an arbitrary vi with
c(vi) = i otherwise; the resulting k-tuple induces at least (1− 2δ)

(k
2

)

edges in G and satisfies
c(vi) = i.

From Observation 8.2 (with some ε > 0) and Lemma 8.4 (with δ = ε
2) we conclude:

Corollary 8.5. Assuming Conjecture 8.1, there is a constant λ > 0 such that Max-Hom(A,−)
for the class of tournaments A has no (1 − λ)-approximation running in time f(|A|)(|A| +
|B|)O(1).

In particular, assuming Gap-ETH, there is no PTAS (and actually no FPT approximation
scheme) for Max-Hom(A,−).
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9 Open questions

Dichotomy Our results, in particular Lemma 1.4, lead us to believe that perhaps the next
question has a positive answer.

Question 9.1. Does Max-r-CSP(G) admit a PTAS for every r if and only if G is fractionally-
tw-fragile?

A concrete open question concerns cographs, i.e., graphs of clique-width two: Are cographs
pliable? More generally, are graphs of bounded clique-width pliable? Note that while certain
techniques and results transfer from structurally sparse graphs to dense graphs (clique-width
being an example), this fails for pliability as pliability is not closed under complementation
since all classes of dense graphs are pliable.

Some example cases where it would be important to show hardness of approximation (or
at least integrality gaps for constant levels of the Sherali-Adams hierarchy) in order to shed
light on Question 9.1 are classes of unbounded average degree or classes of 3-regular graphs
with unbounded girth. In fact, we do not know of any examples of non-pliable classes of
structures A for which Max-Hom(A,−) admits a PTAS and thus it is non inconceivable that
pliability captures all tractable cases.

Constant-factor approximation Instead of PTASes one can of course ask about the
existence of some constant-factor approximation. For fixed signatures, Max-Hom always
admits a simple constant-factor approximation: essentially map everything randomly to the
densest r-tuple, where r is the maximum arity. For the general Max-r-CSP(G) problem the
situation is more interesting: in general (when G is the class of all graphs) a constant-factor
approximation is impossible; on the other hand for any monotone class of bounded average
degree, there is again a simple solution: because such classes have bounded degeneracy, the
edge set can be partitioned into a constant number of trees, where the problem can be solved
exactly. The results of [28] imply that if the average degree is too high, the problem is again
hard. Can a dichotomy be shown?

Weak hyperfiniteness As shown in Theorem 1.6, monotone hyperfinite classes are fractionally-
tw-fragile and have bounded degree. The vertex version of hyperfiniteness is called “weakly
hyperfinite” in [73] or “fragmentable” in [37, 36]. Is is strictly weaker: stars satisfy it, despite
having unbounded degree. Nešetřil and Ossona de Mendez [73] proved that for a monotone
class of graphs G of bounded average degree, G is weakly hyperfinite if and only if for every
d ∈ N, {G ∈ G : max deg(G) ≤ d} is hyperfinite. This suggests a possible extension to graphs
of unbounded degree: are monotone weakly hyperfinite classes fractionally-tw-fragile? This
would imply a conjecture of Dvořák [29], that all graph classes with strongly sublinear separa-
tors are fractionally-tw-fragile. However, it is not even known whether all monotone weakly
hyperfinite classes have bounded average degree.

Efficient PTAS As mentioned in the introduction, both dense graphs and hyperfinite
graphs can be approximated by constant-size descriptions, and in fact by constant-size ran-
dom samples. Since size-pliability also approximates with constant-size descriptions, this
suggests there may be a general way to sample from such structures to give constant-time
approximations (for an appropriate input model). In particular, can property-testing results
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for hyperfinite graphs be extended to fractionally-tw-fragile graphs? Perhaps this could be a
way to obtain EPTASes13 for Max-r-CSPs with fixed alphabets. Our methods seems unlikely
to give an EPTAS directly. The analogous question in the exact setting is as follows; we
believe it to be open.

Question 9.2. Is 3-colouring fixed-parameter tractable when parameterised by the treewidth
of the core (the smallest homomorphically equivalent subgraph)? That is, given a graph G
which is promised to have a core of treewidth at most k, can we decide its 3-colourability in
time f(k)|G|O(1) for some function f?

In this question treewidth could also be replaced by size, in which case an algorithm with
running time O(n)k is trivial (test every k-subgraph for 3-colourability). A similar algorithm
for treewidth is due to Dalmau et al. [16], see also [47, Theorem 3.1].
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[86] Johan Thapper and Stanislav Živný. The complexity of finite-valued CSPs. J. ACM, 63(4), 2016.
Article No. 37. doi:10.1145/2974019.

[87] Carsten Thomassen. Girth in graphs. J. Comb. Theory, Ser. B, 35(2):129–141, 1983.
doi:10.1016/0095-8956(83)90067-9.

[88] Jan van den Heuvel, Patrice Ossona de Mendez, Daniel Quiroz, Roman Rabinovich, and Sebastian
Siebertz. On the generalised colouring numbers of graphs that exclude a fixed minor. Eur. J.
Comb., 66:129–144, 2017. arXiv:1602.09052, doi:10.1016/j.ejc.2017.06.019.

A Farkas’ lemma and proofs of Proposition 2.5 and Lemma 4.3

Farkas’ lemma is the fundamental duality for systems of linear inequalities.

Lemma A.1 (Farkas’ lemma [82, Corollary 7.1d]). Let A be an m × n rational matrix and
b̄ ∈ Qm. Then, exactly one of the two holds:

• Ax̄ = b̄ for some x̄ ∈ Qn with x̄ ≥ 0, or

• AT ȳ ≥ 0 and b̄T ȳ < 0 for some ȳ ∈ Qm.

For the duality between the existence of overcasts and the overcast relation �, we use Farkas’
lemma in the following form:

Lemma A.2 (Farkas’ lemma, variant 1). Let A be an m × n rational matrix and b̄ ∈ Qm.
Exactly one of the following holds:

• there are xi ∈ Q≥0 (i = 1, . . . , n) such that
∑

i xi = 1 and
∑

iAi,jxi ≥ bj for j =
1, . . . ,m;

46

https://doi.org/10.1016/0022-0000(91)90023-X
https://doi.org/10.1145/1374376.1374414
https://doi.org/10.1017/S0963548307008553
https://doi.org/10.1137/1.9781611976465.29
https://doi.org/10.1145/321958.321975
https://doi.org/10.1137/0403036
https://doi.org/10.1016/0097-3165(90)90070-D
http://i.stanford.edu/pub/cstr/reports/cs/tr/75/489/CS-TR-75-489.pdf
https://doi.org/10.1145/2974019
https://doi.org/10.1016/0095-8956(83)90067-9
http://arxiv.org/abs/1602.09052
https://doi.org/10.1016/j.ejc.2017.06.019


• there are yj ∈ Q≥0 (j = 1, . . . ,m) such that
∑

j Ai,jyj <
∑

j bjyj for i = 1, . . . , n.

Proof. The first condition is equivalent to the existence of a solution in variables xi ∈ Q≥0

(i = 1, . . . , n) and sj ∈ Q≥0 (j = 1, . . . ,m) of the following system:

∑

i

xi = 1

∑

i

Ai,jxi − sj = bj (for j = 1, . . . ,m).

By Lemma A.1, this system has a solution if and only if the following system has no solution
in variables z ∈ Q and yj ∈ Qm for j = 1, . . . ,m:

z +
∑

j

Ai,jyj ≥ 0 (for i = 1, . . . , n)

−yj ≥ 0 (for j = 1, . . . ,m)

z +
∑

j

bjyj < 0

Equivalently, there are no y′j = −yj ∈ Qm
≥0 such that

∑

j Ai,jy
′
j ≤ z <

∑

j bjy
′
j (for i =

1, . . . , n).

Proposition (Proposition 2.5 restated). Let A and B be σ-structures. Then, A � B if and
only if there is an overcast from A to B.

Proof. First, suppose that there exists an overcast ω from A to B. Let C be a σ-structure.
Then, if h is a maximum-value mapping from B to C we have

opt(B,C) =
∑

(f,x)∈tup(B)

fB(x)fC(h(x)) ≤
∑

(f,x)∈tup(B)





∑

g∈BA

ω(g)fA(g−1(x))



 fC(h(x))

=
∑

g∈BA

ω(g)





∑

(f,x)∈tup(B)

fA(g−1(x))fC(h(x))





=
∑

g∈BA

ω(g)





∑

(f,y)∈tup(A)

fA(y)fC(h(g(y)))





and hence there exists g ∈ BA such that opt(B,C) ≤ ∑

(f,y)∈tup(A) f
A(y)fC(h(g(y))) =

value(h ◦ g) ≤ opt(A,C). Therefore, A � B. For the converse implication, we shall use
Lemma A.2. If there is no overcast from A to B, this means there are no numbers ω(g) ∈ Q≥0

(for g ∈ BA) such that
∑

g ω(g) = 1 and
∑

g∈BA ω(g)fA(g−1(x)) ≥ fB(x) for (f,x) ∈ tup(B).
By the lemma above, this is equivalent to the existence of y(f,x) ∈ Q≥0 (for (f,x) ∈ tup(B))
such that

∑

(f,x)∈tup(B)

fA(g−1(x))y(f,x) <
∑

(f,x)∈tup(B)

fB(x)y(f,x) for all g ∈ BA.

Let Bȳ be the σ-structure with domain B such that fBȳ(x) = y(f,x), for all (f,x) ∈ tup(B)
(fBȳ(x) = 0 otherwise). By the above, opt(A,Bȳ) < opt(B,Bȳ) and hence A 6 � B.
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For the duality between ε-thin distributions of modulators and weights avoiding any
ε-small modulator, we use a variant of Farkas’ lemma obtained by taking −A and −b in
Lemma A.2.

Lemma A.3 (Farkas’ lemma, variant 2). Let A be an m× n rational matrix and let b̄ ∈ Qm.
Exactly one of the following holds:

• there are xi ∈ Q≥0 (i = 1, . . . , n) such that
∑

i xi = 1 and
∑

iAi,jxi ≤ bj for j =
1, . . . ,m;

• there are yj ∈ Q≥0 (j = 1, . . . ,m) such that
∑

j Ai,jyj >
∑

j bjyj for i = 1, . . . , n.

Lemma (Lemma 4.3 restated). Let F be a family of subsets of a set V . The following are
equivalent:

• there is an ε-thin distribution π of sets X ∈ F (i.e., for all v ∈ V , PrX∼π[v ∈ X] ≤ ε);

• for all non-negative weights (w(v))v∈V , there is an X ∈ F such that w(X) ≤ ε · w(V ).

Proof. The first item is equivalent to the existence of numbers π(X) ∈ Q≥0 for X ∈ F
such that

∑

X π(X) = 1 and for all v ∈ V ,
∑

X [v ∈ X] · π(X) ≤ ε. By Lemma A.3, this
holds if and only if there are no numbers w(v) ∈ Q≥0 for v ∈ V such that for all X ∈ F ,
∑

v[v ∈ X] · w(v) > ∑

v ε · w(v).

B Proof of Proposition 3.3

Let SAk(A,C) denote the Sherali-Adams linear programming relaxation of Max-Hom(A,C),
given in Figure 1 in Section 3. Recall that optk(A,C) denotes its optimum value and we write
A�k B if optk(A,C) ≥ optk(B,C) for all structures C with the same signature as A and B.

Proposition (Proposition 3.3 restated). Let A and B be σ-structures and k ≥ maxf∈σ ar f .
If there is an overcast from A to B then A�k B.

Proof. Let C be an arbitrary σ-structure, ω be an overcast from A to B and λ be an optimal
solution to SAk(B,C). (Recall that for a tuple x we denote by Set(x) the set of elements
appearing in x.) We have that

optk(B,C) =
∑

(f,x)∈tup(B), s:Set(x)→C

λ(Set(x), s)fB(x)fC(s(x))

≤
∑

(f,x)∈tup(B), s:Set(x)→C





∑

g∈BA

ω(g)fA(g−1(x))



 λ(Set(x), s)fC(s(x))

=
∑

g∈BA

ω(g)





∑

(f,x)∈tup(B), s:Set(x)→C

λ(Set(x), s)fA(g−1(x))fC(s(x))





=
∑

g∈BA

ω(g)





∑

(f,y)∈tup(A), s:g(Set(y))→C

λ(g(Set(y)), s)fA(y)fC(s(g(y)))




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and hence there is g : A → B such that

optk(B,C) ≤
∑

(f,y)∈tup(A), s:g(Set(y))→C

λ(g(Set(y)), s)fA(y)fC(s(g(y))) (1)

For Y ∈
( A
≤k

)

and r : Y → C, we define

λ′(Y, r) =

{

λ(g(Y ), s) if there exists s : g(Y ) → C such that s ◦ g = r

0 otherwise

Note that λ′ is a feasible solution of SAk(A,C). Indeed, for Y ∈
( A
≤k

)

, we have

∑

r:Y→C

λ′(Y, r) =
∑

s:g(Y )→C

λ′(Y, s ◦ g) =
∑

s:g(Y )→C

λ(g(Y ), s) = 1.

Moreover, let Z ⊆ Y ∈
( A
≤k

)

, and r : Z → C. If there is no s : g(Z) → C such that s ◦ g = r,
then

λ′(Z, r) = 0 =
∑

t:Y→C, t|Z=r

λ′(Y, t).

If such a mapping s exists, then

∑

t:Y→C, t|Z=r

λ′(Y, t) =
∑

s′:g(Y )→C, s′|g(Z)=s

λ′(Y, s′ ◦ g)

=
∑

s′:g(Y )→C, s′|g(Z)=s

λ(g(Y ), s′)

= λ(g(Z), s)

= λ′(Z, r).

Since λ′ is feasible and by (1), we conclude that

optk(A,C) ≥
∑

(f,y)∈tup(A), r:Set(y)→C

λ′(Set(y), r)fA(y)fC(r(y))

=
∑

(f,y)∈tup(A), s:g(Set(y))→C

λ′(Set(y), s ◦ g)fA(y)fC(s(g(y)))

=
∑

(f,y)∈tup(A), s:g(Set(y))→C

λ(g(Set(y)), s)fA(y)fC(s(g(y)))

≥ optk(B,C).
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