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Abstract
The problem Max W -Light (Max W -Heavy) for an undirected graph is to assign a direction to
each edge so that the number of vertices of outdegree at most W (resp. at least W ) is maximized.
It is known that these problems are NP-hard even for fixed W . For example, Max 0-Light is
equivalent to the problem of finding a maximum independent set.

In this paper, we show that for any fixed constantW , Max W -Heavy can be solved in linear
time for hereditary graph classes for which treewidth is bounded by a function of degeneracy.
We show that such graph classes include chordal graphs, circular-arc graphs, d-trapezoid graphs,
chordal bipartite graphs, and graphs of bounded clique-width.

To have a polynomial-time algorithm for Max W -Light, we need an additional condition of
a polynomial upper bound on the number of potential maximal cliques to apply the metatheorem
by Fomin, Todinca, and Villanger [SIAM J. Comput., 44(1):57–87, 2015]. The aforementioned
graph classes, except bounded clique-width graphs, satisfy such a condition. For graphs of
bounded clique-width, we present a dynamic programming approach not using the metatheorem
to show that it is actually polynomial-time solvable for this graph class too.

We also study the parameterized complexity of the problems and show some tractability and
intractability results.

1998 ACM Subject Classification G.2.2 Graph Theory

Keywords and phrases orientation, graph class, width parameter, parameterized complexity

Digital Object Identifier 10.4230/LIPIcs.ISAAC.2016.20

1 Introduction

Let G = (V,E) be an undirected graph. An orientation of G is a function that maps each
undirected edge {u, v} ∈ E to one of the two possible directed edges (u, v) and (v, u). For
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20:2 Degree-Constrained Orientation of Maximum Satisfaction

any orientation Λ of G, define Λ(E) =
⋃

e∈E{Λ(e)} and let Λ(G) denote the directed graph
(V,Λ(E)). For any vertex u ∈ V , the outdegree of u under Λ is defined as d+

Λ(u) = |{(u, v) :
(u, v) ∈ Λ(E)}|, i.e., the number of outgoing edges from u in Λ(G). For any non-negative
integer W , a vertex u ∈ V is called W -light in Λ(G) if d+

Λ (u) ≤W , and W -heavy in Λ(G) if
d+

Λ (u) ≥W .
For any fixed integer W ≥ 0, the following optimization problems (introduced in [3], see

also [4]) are defined, where the input is an undirected graph G = (V,E):
Max W -Light: Output an orientation Λ of G
such that

∣∣{u ∈ V : d+
Λ (u) ≤W}

∣∣ is maximized.
Max W -Heavy: Output an orientation Λ of G
such that

∣∣{u ∈ V : d+
Λ (u) ≥W}

∣∣ is maximized.
Symmetrically, we can consider the following problems:

Min W -Light: Output an orientation Λ of G
such that

∣∣{u ∈ V : d+
Λ (u) ≤W}

∣∣ is minimized.
Min W -Heavy: Output an orientation Λ of G
such that

∣∣{u ∈ V : d+
Λ (u) ≥W}

∣∣ is minimized.
Observe that Max W -Light (resp., Max W -Heavy) and Min (W + 1)-Heavy (resp., Min
(W −1)-Light) are supplementary problems in the sense that an exact algorithm for one gives
an exact algorithm for the other, though their approximability properties and fixed-parameter
tractability may differ. Since this paper mainly focuses on the polynomial-time solvability,
we consider only Max W -Light and Max W -Heavy. 1

It is shown in [3] that Max W -Light is NP-hard for any fixed W ≥ 0, and Max
W -Heavy is NP-hard for any fixed W ≥ 3. They also show that for W ≤ 1 Max W -Heavy
can be solved in polynomial time. Recently Khoshkhah [23] has closed the gap by showing
that Max 2-Heavy can be solved in polynomial time.

For these problems, the same authors of [3] investigate the approximability [4]. They got
comprehensive results on the approximability of the problems. Due to the work, the general
(in)approximability of the problems is well understood. In this paper, we thus investigate the
problem from another aspect, that is, graph classes. For the two problems Max W -Light
and Max W -Heavy, we take similar but slightly different approaches.

The main tool for Max W -Light is the metatheorem of Fomin, Todinca, and Villanger [16]
that can be seen as an extension of Courcelle’s theorem [1, 12]. It provides a polynomial-
time algorithm for finding a maximum induced subgraph of bounded treewidth satisfying a
counting monadic second-order logic formula from a given graph with polynomially many
potential maximal cliques. We show that if a hereditary graph class has a polynomial upper
bound on the number of potential maximal cliques and has a function depending only on
degeneracy as an upper bound of treewidth, then the metatheorem of Fomin et al. can be
applied to Max W -Light.

Similarly, for Max W -Heavy, we consider hereditary graph classes with treewidth
bounded by a function of degeneracy. However, we do not require polynomial upper bounds
on the number of potential maximal cliques. We first show that the problem for graphs of
bounded treewidth can be solved in linear time. Next we present a linear-time reduction
from graphs with a function of degeneracy as an upper bound of treewidth to graphs of
bounded treewidth. Combining these results, we obtain a linear-time algorithm for Max
W -Heavy on graph classes with the aforementioned property.

1 We consider parameterized complexity in Section 5 where the equivalence does not hold.
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We then show that our algorithms can be applied to several well-known graph classes. It
is known that chordal graphs, circular-arc graphs, d-trapezoid graphs, and chordal bipartite
graphs have polynomial upper bounds on the number of potential maximal cliques (see
Section 4). We show that these hereditary graph classes have functions of degeneracy as
upper bounds on treewidth, and thus our algorithms can be applied. Additionally, we observe
that graphs of bounded clique-width admit a function of degeneracy as an upper bounded
of treewidth, and thus Max W -Heavy can be solved in linear time. To show that Max
W -Light can be solved in polynomial time for graphs of bounded clique-width, we present
a dynamic programming based algorithm.

We also consider the parameterized complexity of the problems. We show that for any
fixed W , Max W -Light is W[1]-complete, while Max W -Heavy admits a kernel of O(Wk)
vertices, where the parameter k is the solution size.

1.1 Related work
Graph orientations that optimize certain objective functions involving the resulting directed
graph or that satisfy some special property such as acyclicity [39] or k-edge connectivity [10,
33, 37] have many applications to graph theory, combinatorial optimization, scheduling (load
balancing), resource allocation, and efficient data structures. For example, an orientation
that minimizes the maximum outdegree [5, 9, 40] can be used to support fast vertex
adjacency queries in a sparse graph by storing each edge in exactly one of its two incident
vertices’ adjacency lists while ensuring that all adjacency lists are short [9]. There are many
optimization criteria for graph orientation other than these. See [2] or Chapter 61 in [38] for
more details and additional references.

On the other hand, degree-constrained graph orientations [17, 18, 21, 29] arise when a
degree lower bound W l(v) and a degree upper bound Wu(v) for each vertex v in the graph
are specified in advance or as part of the input, and the outdegree of v in any valid graph
orientation is required to lie in the interval [W l(v), . . . ,Wu(v)]. Obviously, a graph does not
always have such an orientation, and in this case, one might want to compute an orientation
that best fits the outdegree constraints according to some well-defined criteria [2, 3]. In case
W l(v) = 0 and Wu(v) = W for every vertex v in the input graph, where W is a non-negative
integer, and the objective is to maximize (resp., minimize) the number of vertices that
satisfy (resp., violate) the outdegree constraints, then we obtain Max W -Light (resp., Min
(W + 1)-Heavy). Similarly, if W l(v) = W and Wu(v) =∞ for every vertex v in the input
graph, then we obtain Max W -Heavy and Min (W − 1)-Light.

Another related problem is to find a maximum vertex set that induces a subgraph of
bounded degeneracy. (See the next section for the definition of degeneracy.) This problem
can be seen as a variant of Max W -Light, where we can use acyclic orientations only.
This problem is studied in the context of parameterized [31] and exact [36] computation.
Concerning graph classes, we can obtain a result similar to the one for Max W -Light as we
observe in the final section of this paper.

2 Preliminaries

The degree of u in G is dG(u) = |NG(u)|. We define δ(G) = min{dG(u) : u ∈ V (G)}. The
degeneracy of a graph G, denoted by δ̂(G), is the maximum of the minimum degrees over all
induced subgraphs of G. Let (v1, . . . , vn) be an ordering on V (G) such that dGi

(vi) = δ(Gi),
where Gi = G[{vj : j ≥ i}]. It is known that such an ordering can be computed in linear
time and that δ̂(G) = max1≤i≤n δ(Gi) [32]. For any U ⊆ V (G), the subgraph induced by
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20:4 Degree-Constrained Orientation of Maximum Satisfaction

U is denoted by G[U ]. If G[U ] is a complete graph, then U is a clique of G. The size of a
maximum clique in G is denoted by ω(G). Let ωb(G) be the maximum integer k such that
G has a subgraph isomorphic to the complete bipartite graph Kk,k. From the definition,
ω(G)− 1 and ωb(G) are lower bounds of δ̂(G). A class C of graphs is hereditary if C is closed
under taking induced subgraphs.

For an integer W ≥ 0, an orientation of a graph is called a W -light orientation if the
maximum outdegree is at most W . If a W -light orientation exists, we say that the graph is
W -light orientable. By replacing “at most” with “at least” in these definitions, we similarly
define W -heavy orientations and W -heavy orientable graphs.

2.1 Minimal triangulations and potential maximal cliques
A tree-decomposition of a graph G = (V,E) is a pair ({Xi : i ∈ I}, T = (I, F )) such that
each Xi, called a bag, is a subset of V , and T is a tree such that

for each v ∈ V , there is i ∈ I with v ∈ Xi;
for each {u, v} ∈ E, there is i ∈ I with u, v ∈ Xi;
for i, j, k ∈ I, if j is on the i, k-path in T , then Xi ∩Xk ⊆ Xj .

The width of a tree-decomposition is the size of a maximum bag minus 1. A graph has
treewidth at most t if and only if it has a tree-decomposition of width at most t. We denote
the treewidth of G by tw(G).

A graph is chordal (or triangulated) if it has no induced cycle of length 4 or more. A
triangulation of a graph G = (V,E) is a chordal graph G′ = (V,E′) such that E ⊆ E′. A
triangulation G′ of G is minimal if no proper subgraph of G′ is a triangulation of G. It
is known that the treewidth of G is the minimum integer t such that there is a (minimal)
triangulation H of G with the maximum clique size t + 1. A vertex set P ⊆ V (G) is a
potential maximal clique of G if P is a maximal clique in some minimal triangulation of G.
The set of all potential maximal cliques of G is denoted by ΠG. A vertex set S ⊆ V (G)
is an a, b-separator for a, b ∈ V (G) if a and b are in different components in G − S. An
a, b-separator is minimal if no proper subset of it is an a, b-separator. A vertex set is a
minimal separator if it is a minimal a, b-separator for some pair a, b. The set of all minimal
separators of G is denoted by ∆G. By the following proposition, graphs have a polynomial
number of minimal separators if and only if they have a polynomial number of potential
maximal cliques.

I Proposition 2.1 (Bouchitté and Todinca [8]). For every n-vertex graph G, it holds that
|∆G|/n ≤ |ΠG| ≤ n|∆G|2 + n|∆G|+ 1.

3 Metatheorems

In this section we present metatheorems for Max W -Light and Max W -Heavy. We apply
them to some well-studied graph classes in the next section.

We now introduce the monadic second-order logic (MSO) of graphs. The syntax of MSO
of graphs includes (i) the logical connectives ∨, ∧, ¬, ⇔, ⇒, (ii) variables for vertices, edges,
vertex sets, and edge sets, (iii) the quantifiers ∀ and ∃ applicable to these variables, and
(iv) the following binary relations:

u ∈ U for a vertex variable u and a vertex set variable U ;
d ∈ D for an edge variable d and an edge set variable D;
inc(d, u) for an edge variable d and a vertex variable u, where the interpretation is that d
is incident with u;
equality of variables.
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In the counting monadic second-order logic (CMSO) of graphs, we have an additional sentence
of checking the cardinality of a set modulo some constant.

I Lemma 3.1. For any fixed W , Max W -Heavy and Max W -Light for graphs of bounded
treewidth can be expressed in an optimization version of MSO and thus solved in linear time.

Proof (sketch). Let G = (V,E) be a graph of treewidth at most k. It is known that for such a
graph, an edge orientation can be expressed in MSO by a proper coloring γ : V → {1, . . . , k+1}
and an edge set F ⊆ E [6].

Let prop-col(V1, . . . , Vk+1) be an MSO formula that means V1, . . . , Vk+1 give a proper
k + 1 coloring of G. For an edge e ∈ E and a vertex v ∈ V , there is an MSO formula
outV1,...,Vk+1,F (e, v) that means e is an out-going edge from v. Under the orientation repre-
sented by (V1, . . . , Vk+1) and F , W -heaviness and W -lightness of a vertex can be expressed in
MSO. Let W -heavyV1,...,Vk+1,F (v) and W -lightV1,...,Vk+1,F (v) be such formulas. The problems
are equivalent to finding a maximum vertex set X in the following formulas:

∃V1, . . . , Vk+1,∃F
(

prop-col(V1, . . . , Vk) ∧ ∀v ∈ X
(
W -heavyV1,...,Vk+1,F (v)

))
,

∃V1, . . . , Vk+1,∃F
(

prop-col(V1, . . . , Vk) ∧ ∀v ∈ X
(
W -lightV1,...,Vk+1,F (v)

))
.

It is known that for a fixed MSO formula on a graph of bounded treewidth, one can find in
linear time a maximum vertex subset satisfying the formula (see [1, 12]). J

I Corollary 3.2. For fixed W and k, the property of being W -light orientable can be expressed
in MSO for graphs of treewidth at most k.

3.1 Max W -Light
We can see that the problem of finding a maximum W -light orientable induced subgraph is
polynomially equivalent to Max W -Light.

I Lemma 3.3. A graph G has a W -light orientable induced subgraph of at least k vertices if
and only if the edges of G can be oriented so that at least k vertices have outdegree at most
W . Furthermore, if a maximum W -light orientable induced subgraph of G can be found in
O(f(m,n)) time, then Max W -Light can be solved in O(f(m,n) +m1.5) time, where m
and n are the numbers of edges and vertices in G, respectively.

Recently, Fomin, Todinca, and Villanger [16] have presented the following metatheorem.

I Proposition 3.4 (Fomin, Todinca, and Villanger [16]). For any fixed t and a CMSO-
expressible property P, the following problem can be solved in polynomial time for any class
of graphs with a polynomial number of potential maximal cliques: Given a graph G, find a
maximum induced subgraph H of treewidth at most t that has the property P.

This metatheorem is quite powerful and allows us to solve many problems for graphs with
polynomially many potential maximal cliques. However, we cannot apply it to our problem
Max W -Light in general because W -light orientable graphs may have large treewidth. For
example, grid graphs are 2-light orientable but have unbounded treewidth.

In the following, we show that with an additional restriction to graph classes, we can
apply the metatheorem of Fomin, Todinca, and Villanger to Max W -Light.

I Lemma 3.5. Every W -light orientable graph has degeneracy at most 2W .

ISAAC 2016
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I Theorem 3.6. For any fixed W , Max W -Light can be solved in polynomial time for
a hereditary graph class C with a polynomial number of potential maximal cliques if the
treewidth of each graph in C is bounded from above by a function of its degeneracy.
Proof. Let f be a function such that tw(G) ≤ f(δ̂(G)) for each G ∈ C. By Lemma 3.5,
a W -light orientable graph in C has treewidth at most f(2W ). Since C is hereditary, a
maximum W -light orientable induced subgraph of a graph in C can be found in polynomial
time by Proposition 3.4 and Corollary 3.2. Now, by Lemma 3.3, the theorem follows. J

3.2 Max W -Heavy
Unlike Max W -Light, the problem Max W -Heavy is not equivalent to the problem of
finding a maximum orientable induced subgraph. We here present a way of directly finding
an orientation with as many W -heavy vertices as possible for graphs with treewidth bounded
by a function of degeneracy.
I Proposition 3.7 ([4]). Every graph of minimum degree at least 2W + 1 is W -heavy
orientable and a W -heavy orientation of it can be found in linear time.
I Theorem 3.8. For any fixed W , Max W -Heavy can be solved in linear time for a
hereditary graph class C if the treewidth of each graph in C is bounded from above by a
function of its degeneracy.
Proof. Let f be a function such that tw(G) ≤ f(δ̂(G)) for each G ∈ C. Let G ∈ C be a
graph with n vertices. Let (v1, v2, . . . , vn) be an ordering of V (G) such that for each i, the
vertex vi has the minimum degree in Gi, where Gi = G[{vj : i ≤ j ≤ n}]. Let h be the first
index such that dGh

(vh) ≥ 2W + 1. If there is no such index, we set h = n+ 1.
Let H = G[{vj : 1 ≤ j < h}]. Since C is hereditary, we have H ∈ C, and thus

tw(H) ≤ f(δ̂(H)) ≤ f(2W ). We obtain H ′ from H as follows: add a clique C of size 2W + 1;
for each vertex v in H, add edges from v to arbitrarily chosen dG(v)− dH(v) vertices in C.
It holds that tw(H ′) ≤ tw(H) + |C| ≤ f(2W ) + 2W + 1.

By Lemma 3.1, an orientation Λ′ of H ′ with the maximum number of W -heavy vertices
can be found in linear time. Note that all vertices in C are W -heavy under Λ′ even in H ′[C].
Otherwise, by Proposition 3.7, we can change the directions of edges in H ′[C] so that all
vertices in C become W -heavy. Since this modification does not decrease the outdegree of
any vertex in V (H), the new orientation has strictly more W -heavy vertices than Λ′. This
contradicts the optimality of Λ′.

Let Λ′′ be a W -heavy orientation of Gh = G[{vh, . . . , vn}]. By Proposition 3.7, such an
orientation can be found in linear time. We next construct an orientation Λ of G from Λ′ and
Λ′′ as follows: for each edge in E(H) or E(Gh), we use the direction in Λ′ or Λ′′, respectively;
for each edge between V (H) and V (Gh), we use the direction from V (H) to V (Gh). All
vertices in V (Gh) are W -heavy in G under Λ. Under Λ, each vertex in V (H) has at least as
many out-neighbors as under Λ′. Thus a vertex in V (H) is W -heavy in G under Λ if it is
W -heavy in H ′ under Λ′.

We now show the optimality of Λ. Suppose to the contrary that there is an orientation
ΛOPT of G with strictly more W -heavy vertices than Λ. Let F and FOPT be the W -heavy
vertices in V (H) under Λ and ΛOPT, respectively. Since the vertices in V (Gh) are W -heavy
under Λ, we have |F | < |FOPT|. Now let Λ′OPT be an orientation of H ′ such that the edges in
H are oriented as in ΛOPT, the edges between V (H) and C are oriented from V (H) to C,
and the edges in H[C] are oriented so that all the vertices in C become W -heavy. Then, at
least |C|+ |FOPT| > |C|+ |F | vertices are W -heavy in H ′ under Λ′OPT. This contradicts the
optimality of Λ′ since at most |C|+ |F | vertices are W -heavy in H ′ under Λ′. J
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4 Graph classes

In this section, we show that Theorems 3.6 and 3.8 can be applied to several important graph
classes. More precisely, we show the following theorems.

I Theorem 4.1. For any fixed W , Max W -Light can be solved in polynomial time for the
classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal bipartite graphs,
and graphs of bounded clique-width.

I Theorem 4.2. For any fixed W , Max W -Heavy can be solved in linear time for the
classes of chordal graphs, d-trapezoid graphs, circular-arc graphs, chordal bipartite graphs,
and graphs of bounded clique-width.

To prove Theorems 4.1 and 4.2, we show for each graph class that it satisfies conditions
of Theorems 3.6 and 3.8 in the following subsections. To solve Max W -Light for graphs
of bounded clique-width, we present a direct solution as we cannot apply the metatheorem.
Note that all graph classes studied in this section are hereditary.

4.1 Chordal graphs, d-trapezoid graphs, and circular-arc graphs
It is well known that a chordal graph of n vertices has at most n maximal cliques (see [22]).
Since a chordal graph is the unique minimal triangulation of itself, the number of potential
maximal cliques is at most n for every n-vertex chordal graph. From the definition of chordal
graphs, the following equality follows.

I Proposition 4.3 (Folklore). For every chordal graph G, tw(G) = δ̂(G) = ω(G)− 1.

The co-comparability graph of a partial order (V,≺) is a graph with the vertex set V
in which two vertices u and v are adjacent if and only if they are incomparable, that is,
u 6≺ v and v 6≺ u. A partial order (V,≺) is an interval order if each element v ∈ V can
be represented by an interval [lv, rv] such that u ≺ v if and only if ru < lv. A graph is
a d-trapezoid graph if it is the co-comparability graph of a partial order defined as the
intersection of d interval orders [7]. It is known that every d-trapezoid graph of n vertices
has at most (2n− 3)d−1 minimal separators [28]. Habib and Möhring showed in the proof of
Theorem 3.4 in [20] that for every d-trapezoid graph G, tw(G) ≤ 4d · ωb(G)− 1. This gives
the following fact as a direct corollary.

I Proposition 4.4 ([20]). For every d-trapezoid graph G, tw(G) ≤ 4d · δ̂(G)− 1.

A graph is a circular-arc graph if it is the intersection graph of arcs on a circle. Every
n-vertex circular-arc graph has at most 2n2 − 3n minimal separators [26]. A graph is an
interval graph if it is the intersection graph of intervals on a line. From the definition, every
interval graph is a circular-arc graph. Also, every interval graph is a chordal graph [30].

I Lemma 4.5. For every circular-arc graph G, tw(G) ≤ 2δ̂(G).

4.2 Chordal bipartite graphs
A bipartite graph is a chordal bipartite graph if it has no induced cycle of length 6 or more.
Every chordal bipartite graph has O(m + n) minimal separators [27]. We can show that
for every chordal bipartite graph G, tw(G) ≤ 2δ̂(G)− 1. The proof is a bit more involved
than the ones in the previous subsection. We use the techniques developed by Kloks and
Kratsch [25] for computing the treewidth of a chordal bipartite graph exactly.

I Theorem 4.6. For every chordal bipartite graph G, tw(G) ≤ 2 · ωb(G)− 1.

ISAAC 2016
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4.3 Graphs of bounded clique-width
A k-expression is a rooted binary tree such that

each leaf has label ◦i for some i ∈ {1, . . . , k},
each node with one child has a label ρi,j or ηi,j (i, j ∈ {1, . . . , k}, i 6= j), and
each node with two children has a label ∪.

Each node in a k-expression represents a vertex-labeled graph as follows:
a ◦i-node represents a graph with one vertex of label i;
a ∪-node represents the disjoint union of the labeled graphs represented by its children;
a ρi,j-node represents the labeled graph obtained from the one represented by its child
by relabeling the label-i vertices with label j;
an ηi,j-node represents the labeled graph obtained from the one represented by its child
by adding edges between the label-i vertices and the label-j vertices.

A k-expression represents the graph represented by its root. The clique-width of a graph G,
denoted by cw(G), is the minimum integer k such that there is a k-expression representing a
graph isomorphic to G.

It is known that graphs of bounded treewidth have bounded clique-width [11]. The
converse is not true in general. For example, the complete graph Kn (n ≥ 2) has clique-width
2 and treewidth n− 1. On the other hand, the following bound is known for graphs with no
large complete bipartite subgraphs.

I Proposition 4.7 (Gurski and Wanke [19]). For every graph G of clique-width at most k,
tw(G) ≤ 3k · ωb(G)− 1.

The proposition above with Theorem 3.8 imply that Max W -Heavy can be solved in
linear time for graphs of bounded clique-width. However, we cannot apply Theorem 3.6 since
graphs of bounded clique-width may have a super-polynomial number of potential maximal
cliques. In the rest of this section, we directly show that Max W -Light is polynomial-time
solvable for graphs of bounded clique-width. A k-expression of a graph is irredundant if for
each edge {u, v}, there is exactly one node ηi,j that adds the edge between u and v. We will
show that:

I Theorem 4.8. Given a graph with an irredundant k-expression, Max W -Light can be
solved in time O(n2k(W +2)+4 logn).

For a graph of clique-width k, one can compute a (23k − 1)-expression of it in polynomial
time [34] (see also [35]), while exact computation of the clique-width and a corresponding k-
expression is NP-hard [15]. A k-expression of a graph can be transformed into an irredundant
one with O(n) nodes in linear time [13]. Now the following is a corollary to Theorem 4.8.

I Corollary 4.9. For graphs of clique-width at most k, Max W -Light can be solved in time
O(n2(23k−1)(W +2)+4 logn).

We now prove Theorem 4.8. Let G be an n-vertex graph and T be an irredundant
k-expression of G with O(n) nodes. We denote by r the root of T . For each node t in T , let
Gt be the graph represented by t with Vt := V (Gt). For each i ∈ {1, . . . , k}, let V i

t be the
set of label-i vertices in Gt.

For a node t in T , a k × (W + 2) integer matrix A = (Ai,j)i∈{1,...,k}, j∈{0,...,W +1} is an
outdegree signature of Gt if there is an orientation Λ of Gt such that for each i ∈ {1, . . . , k}
and j ∈ {0, . . . ,W}, Ai,j is the number of label-i vertices with outdegree j in Gt under Λ, and
for each i ∈ {1, . . . , k}, Ai,W +1 is the number of label-i vertices with outdegree at least W + 1
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in Gt under Λ. The weight w(A) of an outdegree signature A is
∑

i∈{1,...,k}, j∈{0,...,W}Ai,j .
Note that there are at most nk(W +2) outdegree signatures for each node in T .

I Observation 4.10. The optimal value of Max W -Light for G is maxA w(A), where the
maximum is taken over all outdegree signatures A of Gr = G.

By Observation 4.10, if we have all possible outdegree signatures for all nodes in T , then
we can obtain the optimal value of Max W -Light. We compute the outdegree signatures
by a bottom-up dynamic programming over the k-expression T . In a standard way, we can
modify the dynamic programming to compute an optimal solution as well.

Computing outdegree signatures for the leaf, ∪-, and ρp,q-nodes is fairly straightforward.
For ηp,q-nodes, we need the following result.

I Proposition 4.11 (Asahiro, Jansson, Miyano, and Ono [2]). Given an undirected n-vertex m-
edge graph G = (V,E) with lower and upper bounds (l(v), u(v)) ∈ {0, . . . , n−1}×{0, . . . , n−1}
for each v ∈ V , it can be decided in O(m1.5 logn) time whether there is an orientation Λ
such that l(v) ≤ d+

Λ (v) ≤ u(v) for each v ∈ V .

I Lemma 4.12. For an ηp,q-node, its outdegree signatures can be computed in time
O(n2k(W +2)+3 logn) from the outdegree signatures of its child.

Proof. Let t be an ηp,q-node with the child t′. By the definition of k-expression, V i
t = V i

t′

for all i. Recall that T is irredundant. Hence there is no edge between V p
t and V q

t in Gt′ ,
while Gt has all possible edges between V p

t and V q
t .

Let Λ′ be an orientation of Gt′ and A′ the corresponding outdegree signature. We say
that A′ can be extended to an outdegree signature A of Gt if there is an orientation Λ of Gt

that corresponds to A such that Λ(e) = Λ′(e) for every e ∈ E(Gt′).

I Claim 4.13. If A′ can be extended to A, then there is an orientation Λ of Gt that corresponds
to A such that d+

Λ′(u) < d+
Λ′(v) implies d+

Λ (u) ≤ d+
Λ (v) for u, v ∈ V i

t and i ∈ {p, q}.

Let A be a candidate of an outdegree signature of Gt. That is, A is a k × (W + 2)
integer matrix A = (Ai,j)i∈{1,...,k}, j∈{0,...,W +1}. For i ∈ {p, q}, let (di,1, . . . , di,|V i

t |) be
the nondecreasing sequence such that for each j ∈ {0, . . . ,W + 1}, the value j appears
exactly Ai,j times. From A′, we define (d′i,1, . . . , d′i,|V i

t |
) in the same way. For i ∈ {p, q} and

h ∈ {1, . . . , |V i
t |}, we define the lower bound li,h and the upper bound ui,h as follows:

li,h = di,h − d′i,h,

ui,h =
{
di,h − d′i,h if di,h ≤W,
n− 1 if di,h = W + 1.

Now let B = (Wp,Wq;EB) be the complete bipartite graph, where Wi = {wi,h : i ∈
{p, q}, h ∈ {1, . . . , |V t

i |}} for i ∈ {p, q}.

I Claim 4.14. A′ can be extended to A if and only if there is an orientation ΛB of B such
that for each vertex wi,h, it holds that li,h ≤ d+

ΛB
(wi,h) ≤ ui,h.

For each candidate A, we construct B from A and A′. We also compute the lower and
upper bounds of outdegree as described above. Then we check orientability under these
bounds. By Proposition 4.11, it can be done in time O(|EB |1.5 log |Wp∪Wq|). We can bound
this by O(n3 logn), and thus the lemma holds. J

We have proved that for each node in T , we can compute its outdegree signatures in
O(n2k(W +2)+3 logn) time. This completes the proof of Theorem 4.8.

ISAAC 2016
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5 Parameterized complexity

In this section, we study the parameterized complexity of the problems. See the recent
textbook [14] for standard concepts in the field of parameterized complexity. The parameter
is the number of vertices of outdegree at most (at least) W in Max W -Light (resp. Max
W -Heavy). We call it the solution size.

By using a general theorem in [24], we can easily show the following result.

I Corollary 5.1. For any fixed integer W ≥ 0, Max W -Light is W[1]-complete when
parameterized by the solution size.

Let (G, k) be an instance of the parameterized version of Max W -Heavy, where the
parameter k is the solution size. We show the following theorem.

I Theorem 5.2. Max W -Heavy parameterized by the solution size k admits a kernel with
at most (2W + 4)k +W − 2 vertices.

In the following, we assume that W ≥ 3 since otherwise the problem can be solved in
polynomial time [3, 23]. Let A ⊆ V (G) be the set of vertices of degree at least W , and let
B = V (G) \A. We first bound the number of vertices in A.

I Lemma 5.3. If |A| ≥ k · (W + 1), then (G, k) is a yes-instance.

By the lemma above, we can assume that |A| < k · (W + 1). We now modify the graph:
1. remove all vertices of B from G;
2. add an independent set B′ of size d|A| ·W/(W − 1)e+W − 2;
3. for each v ∈ A, repeat the following process:

a. find min{|NG(v) ∩B|,W} vertices in B′ with degree at most W − 2;
b. add the edges between v and the vertices chosen.

We call the resultant graph G′. Because W ≥ 3, it holds that (W + 1)W/(W − 1) ≤W + 3,
and thus |B′| ≤ k(W+3)+W−2. This implies that |V (G′)| = |A|+|B′| ≤ k(2W+4)+W−2.

To see that the step 3a is always possible, observe that before an execution of the
step 3a, at most W (|A| − 1) edges between A and B′ are added. On the other hand, if
there are at most W − 1 vertices of degree at most W − 2 in B′, then there are at least
(W − 1)(|B′| − (W − 1)) ≥ (W − 1)(|A| ·W/(W − 1) +W − 2− (W − 1)) = W (|A| − 1) + 1
edges between A and B′.

I Lemma 5.4. (G, k) is a yes-instance if and only if so is (G′, k).

6 Concluding remarks

We have presented metatheorems to show linear-time and polynomial-time solvability of
Max W -Heavy and Max W -Light, respectively. The metatheorems are applied to several
important classes of graphs. We believe our metatheorems can be applied to many other
graph classes. As the final remark, we present a similar result for the problem of finding a
maximum induced subgraph with bounded degeneracy.

I Theorem 6.1. For any fixed W , the problem of finding a maximum set of vertices that
induces a subgraph of degeneracy at most W can be solved in polynomial time for the classes
of chordal graphs, d-trapezoid graphs, circular-arc graphs, and chordal bipartite graphs, and
in linear time for graphs of bounded clique-width.
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