7,229 research outputs found

    SPODT: An R Package to Perform Spatial Partitioning

    Get PDF
    International audienceSpatial cluster detection is a classical question in epidemiology: Are cases located near other cases? In order to classify a study area into zones of different risks and determine their boundaries, we have developed a spatial partitioning method based on oblique decision trees, which is called spatial oblique decision tree (SpODT). This non-parametric method is based on the classification and regression tree (CART) approach introduced by Leo Breiman. Applied to epidemiological spatial data, the algorithm recursively searches among the coordinates for a threshold or a boundary between zones, so that the risks estimated in these zones are as different as possible. While the CART algorithm leads to rectangular zones, providing perpendicular splits of longitudes and latitudes, the SpODT algorithm provides oblique splitting of the study area, which is more appropriate and accurate for spatial epidemiology. Oblique decision trees can be considered as non-parametric regression models. Beyond the basic function, we have developed a set of functions that enable extended analyses of spatial data, providing: inference, graphical representations, spatio-temporal analysis, adjustments on covariates, spatial weighted partition, and the gathering of similar adjacent final classes. In this paper, we propose a new R package, SPODT, which provides an extensible set of functions for partitioning spatial and spatio-temporal data. The implementation and extensions of the algorithm are described. Function usage examples are proposed, looking for clustering malaria episodes in Bandiagara, Mali, and samples showing three different cluster shapes

    TreeGrad: Transferring Tree Ensembles to Neural Networks

    Full text link
    Gradient Boosting Decision Tree (GBDT) are popular machine learning algorithms with implementations such as LightGBM and in popular machine learning toolkits like Scikit-Learn. Many implementations can only produce trees in an offline manner and in a greedy manner. We explore ways to convert existing GBDT implementations to known neural network architectures with minimal performance loss in order to allow decision splits to be updated in an online manner and provide extensions to allow splits points to be altered as a neural architecture search problem. We provide learning bounds for our neural network.Comment: Technical Report on Implementation of Deep Neural Decision Forests Algorithm. To accompany implementation here: https://github.com/chappers/TreeGrad. Update: Please cite as: Siu, C. (2019). "Transferring Tree Ensembles to Neural Networks". International Conference on Neural Information Processing. Springer, 2019. arXiv admin note: text overlap with arXiv:1909.1179

    Using rule extraction to improve the comprehensibility of predictive models.

    Get PDF
    Whereas newer machine learning techniques, like artifficial neural net-works and support vector machines, have shown superior performance in various benchmarking studies, the application of these techniques remains largely restricted to research environments. A more widespread adoption of these techniques is foiled by their lack of explanation capability which is required in some application areas, like medical diagnosis or credit scoring. To overcome this restriction, various algorithms have been proposed to extract a meaningful description of the underlying `blackbox' models. These algorithms' dual goal is to mimic the behavior of the black box as closely as possible while at the same time they have to ensure that the extracted description is maximally comprehensible. In this research report, we first develop a formal definition of`rule extraction and comment on the inherent trade-off between accuracy and comprehensibility. Afterwards, we develop a taxonomy by which rule extraction algorithms can be classiffied and discuss some criteria by which these algorithms can be evaluated. Finally, an in-depth review of the most important algorithms is given.This report is concluded by pointing out some general shortcomings of existing techniques and opportunities for future research.Models; Model; Algorithms; Criteria; Opportunities; Research; Learning; Neural networks; Networks; Performance; Benchmarking; Studies; Area; Credit; Credit scoring; Behavior; Time;

    Robust Machine Learning Applied to Astronomical Datasets I: Star-Galaxy Classification of the SDSS DR3 Using Decision Trees

    Get PDF
    We provide classifications for all 143 million non-repeat photometric objects in the Third Data Release of the Sloan Digital Sky Survey (SDSS) using decision trees trained on 477,068 objects with SDSS spectroscopic data. We demonstrate that these star/galaxy classifications are expected to be reliable for approximately 22 million objects with r < ~20. The general machine learning environment Data-to-Knowledge and supercomputing resources enabled extensive investigation of the decision tree parameter space. This work presents the first public release of objects classified in this way for an entire SDSS data release. The objects are classified as either galaxy, star or nsng (neither star nor galaxy), with an associated probability for each class. To demonstrate how to effectively make use of these classifications, we perform several important tests. First, we detail selection criteria within the probability space defined by the three classes to extract samples of stars and galaxies to a given completeness and efficiency. Second, we investigate the efficacy of the classifications and the effect of extrapolating from the spectroscopic regime by performing blind tests on objects in the SDSS, 2dF Galaxy Redshift and 2dF QSO Redshift (2QZ) surveys. Given the photometric limits of our spectroscopic training data, we effectively begin to extrapolate past our star-galaxy training set at r ~ 18. By comparing the number counts of our training sample with the classified sources, however, we find that our efficiencies appear to remain robust to r ~ 20. As a result, we expect our classifications to be accurate for 900,000 galaxies and 6.7 million stars, and remain robust via extrapolation for a total of 8.0 million galaxies and 13.9 million stars. [Abridged]Comment: 27 pages, 12 figures, to be published in ApJ, uses emulateapj.cl
    corecore