69 research outputs found

    Parallel Model Counting with CUDA: Algorithm Engineering for Efficient Hardware Utilization

    Get PDF
    Propositional model counting (MC) and its extensions as well as applications in the area of probabilistic reasoning have received renewed attention in recent years. As a result, also the need for quickly solving counting-based problems with automated solvers is critical for certain areas. In this paper, we present experiments evaluating various techniques in order to improve the performance of parallel model counting on general purpose graphics processing units (GPGPUs). Thereby, we mainly consider engineering efficient algorithms for model counting on GPGPUs that utilize the treewidth of a propositional formula by means of dynamic programming. The combination of our techniques results in the solver GPUSAT3, which is based on the programming framework Cuda that -compared to other frameworks- shows superior extensibility and driver support. When combining all findings of this work, we show that GPUSAT3 not only solves more instances of the recent Model Counting Competition 2020 (MCC 2020) than existing GPGPU-based systems, but also solves those significantly faster. A portfolio with one of the best solvers of MCC 2020 and GPUSAT3 solves 19% more instances than the former alone in less than half of the runtime

    Counting Complexity for Reasoning in Abstract Argumentation

    Full text link
    In this paper, we consider counting and projected model counting of extensions in abstract argumentation for various semantics. When asking for projected counts we are interested in counting the number of extensions of a given argumentation framework while multiple extensions that are identical when restricted to the projected arguments count as only one projected extension. We establish classical complexity results and parameterized complexity results when the problems are parameterized by treewidth of the undirected argumentation graph. To obtain upper bounds for counting projected extensions, we introduce novel algorithms that exploit small treewidth of the undirected argumentation graph of the input instance by dynamic programming (DP). Our algorithms run in time double or triple exponential in the treewidth depending on the considered semantics. Finally, we take the exponential time hypothesis (ETH) into account and establish lower bounds of bounded treewidth algorithms for counting extensions and projected extension.Comment: Extended version of a paper published at AAAI-1

    Generating Random Instances of Weighted Model Counting:An Empirical Analysis with Varying Primal Treewidth

    Get PDF

    Structural Node Embeddings with Homomorphism Counts

    Full text link
    Graph homomorphism counts, first explored by Lov\'asz in 1967, have recently garnered interest as a powerful tool in graph-based machine learning. Grohe (PODS 2020) proposed the theoretical foundations for using homomorphism counts in machine learning on graph level as well as node level tasks. By their very nature, these capture local structural information, which enables the creation of robust structural embeddings. While a first approach for graph level tasks has been made by Nguyen and Maehara (ICML 2020), we experimentally show the effectiveness of homomorphism count based node embeddings. Enriched with node labels, node weights, and edge weights, these offer an interpretable representation of graph data, allowing for enhanced explainability of machine learning models. We propose a theoretical framework for isomorphism-invariant homomorphism count based embeddings which lend themselves to a wide variety of downstream tasks. Our approach capitalises on the efficient computability of graph homomorphism counts for bounded treewidth graph classes, rendering it a practical solution for real-world applications. We demonstrate their expressivity through experiments on benchmark datasets. Although our results do not match the accuracy of state-of-the-art neural architectures, they are comparable to other advanced graph learning models. Remarkably, our approach demarcates itself by ensuring explainability for each individual feature. By integrating interpretable machine learning algorithms like SVMs or Random Forests, we establish a seamless, end-to-end explainable pipeline. Our study contributes to the advancement of graph-based techniques that offer both performance and interpretability

    Energy flow polynomials: A complete linear basis for jet substructure

    Get PDF
    We introduce the energy flow polynomials: a complete set of jet substructure observables which form a discrete linear basis for all infrared- and collinear-safe observables. Energy flow polynomials are multiparticle energy correlators with specific angular structures that are a direct consequence of infrared and collinear safety. We establish a powerful graph-theoretic representation of the energy flow polynomials which allows us to design efficient algorithms for their computation. Many common jet observables are exact linear combinations of energy flow polynomials, and we demonstrate the linear spanning nature of the energy flow basis by performing regression for several common jet observables. Using linear classification with energy flow polynomials, we achieve excellent performance on three representative jet tagging problems: quark/gluon discrimination, boosted W tagging, and boosted top tagging. The energy flow basis provides a systematic framework for complete investigations of jet substructure using linear methods.Comment: 41+15 pages, 13 figures, 5 tables; v2: updated to match JHEP versio

    Treewidth-aware Reductions of Normal ASP to SAT -- Is Normal ASP Harder than SAT after All?

    Full text link
    Answer Set Programming (ASP) is a paradigm for modeling and solving problems for knowledge representation and reasoning. There are plenty of results dedicated to studying the hardness of (fragments of) ASP. So far, these studies resulted in characterizations in terms of computational complexity as well as in fine-grained insights presented in form of dichotomy-style results, lower bounds when translating to other formalisms like propositional satisfiability (SAT), and even detailed parameterized complexity landscapes. A generic parameter in parameterized complexity originating from graph theory is the so-called treewidth, which in a sense captures structural density of a program. Recently, there was an increase in the number of treewidth-based solvers related to SAT. While there are translations from (normal) ASP to SAT, no reduction that preserves treewidth or at least keeps track of the treewidth increase is known. In this paper we propose a novel reduction from normal ASP to SAT that is aware of the treewidth, and guarantees that a slight increase of treewidth is indeed sufficient. Further, we show a new result establishing that, when considering treewidth, already the fragment of normal ASP is slightly harder than SAT (under reasonable assumptions in computational complexity). This also confirms that our reduction probably cannot be significantly improved and that the slight increase of treewidth is unavoidable. Finally, we present an empirical study of our novel reduction from normal ASP to SAT, where we compare treewidth upper bounds that are obtained via known decomposition heuristics. Overall, our reduction works better with these heuristics than existing translations
    • …
    corecore