Parallel Model Counting with CUDA: Algorithm
Engineering for Efficient Hardware Utilization

Johannes K. Fichte &
TU Dresden, Germany

Markus Hecher =2
TU Wien, Austria
Universitdt Potsdam, Germany

Valentin Roland &
TU Dresden, Germany

—— Abstract

Propositional model counting (MC) and its extensions as well as applications in the area of

probabilistic reasoning have received renewed attention in recent years. As a result, also the need for
quickly solving counting-based problems with automated solvers is critical for certain areas. In this
paper, we present experiments evaluating various techniques in order to improve the performance
of parallel model counting on general purpose graphics processing units (GPGPUs). Thereby, we
mainly consider engineering efficient algorithms for model counting on GPGPUs that utilize the
treewidth of a propositional formula by means of dynamic programming. The combination of
our techniques results in the solver GPUSAT3, which is based on the programming framework
CupA that —compared to other frameworks— shows superior extensibility and driver support. When
combining all findings of this work, we show that GPUSAT3 not only solves more instances of the
recent Model Counting Competition 2020 (MCC 2020) than existing GPGPU-based systems, but
also solves those significantly faster. A portfolio with one of the best solvers of MCC 2020 and
GPUSATS3 solves 19% more instances than the former alone in less than half of the runtime.

2012 ACM Subject Classification Theory of computation — Logic; Computing methodologies —
Massively parallel algorithms; Mathematics of computing — Graph algorithms

Keywords and phrases Propositional Satisfiability, GPGPU, Model Counting, Treewidth, Tree
Decomposition

Digital Object Identifier 10.4230/LIPIcs.CP.2021.24

Supplementary Material Software (Source Code, archived): https://zenodo.org/record/5539470
Software (Source Code): https://github.com/daajoe/GPUSAT/releases/tag/v3.000-pre

Funding Johannes K. Fichte: Google Fellowship at the Simons Institute, UC Berkeley.
Markus Hecher: FWF Grants Y698 and P32830 and Grant WWTF ICT19-065.

Acknowledgements Authors are given in alphabetical order. Main work has been carried out while
the first two authors were visiting the Simons Institute for the Theory of Computing. The authors
gratefully acknowledge the valuable comments made by the anonymous reviewers. In particular, the

authors thank Roland Yap for his efforts and feedback on the final version of this paper.

1 Introduction

Counting problems have perceived increasing interest in recent years. One of these problems
that is well-studied is MC, which aims at counting the number of satisfying assignments of a
given propositional formula. In fact, MC is canonical [3, 46] for the complexity class #P
and there are a list of applications and variants thereof. Among those variants, extensions
of the problem have been studied that involve, e.g., projecting satisfying assignments to
certain variables or weighting variables, which enables applications like quantitative reasoning
via Bayesian networks and other structures, e.g., [48, 9, 14]. Interestingly, there are also
intensive studies focusing on approximation variants of MC, e.g., [7, 18, 6], whose goal is to
approximate the number of satisfying assignments within a certain approximation factor.
? Johannes K. Ficht{a, Markus Hech(.er, and Valentin Roland;

37 icensed under Creative Commons License CC-BY 4.0
27th International Conference on Principles and Practice of Constraint Programming (CP 2021).
Editor: Laurent D. Michel; Article No. 24; pp. 24:1-24:20

\\v Leibniz International Proceedings in Informatics
LIPICS Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Germany


mailto:johannes.fichte@tu-dresden.de
https://orcid.org/0000-0002-8681-7470
mailto:hecher@dbai.tuwien.ac.at
https://orcid.org/0000-0003-0131-6771
mailto:valentin.roland@tu-dresden.de
https://doi.org/10.4230/LIPIcs.CP.2021.24
https://zenodo.org/record/5539470
https://github.com/daajoe/GPUSAT/releases/tag/v3.000-pre
https://creativecommons.org/licenses/by/4.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

24:2

Parallel Model Counting with CUDA

There are a list of solvers stemming from different technologies and approaches. These
solvers have been pushed towards their limits with the help of a dedicated competition [22] for
model counting. Among the different approaches, powerful solvers emerged based on caching,
knowledge compilation, and parameterized complexity, e.g., [11, 51, 42, 47, 12, 44, 39, 49, 15].
Notably, for model counting, also techniques for parallel solving proved successful [5, 40].
Among those parallel solvers there are also solvers [28, 29] that utilize modern consumer
general purpose graphics processing units (GPGPUs). Those existing GPGPU-based imple-
mentations are based on dynamic programming on a tree decomposition of different graph
representations of a propositional formula. One particular graph representation [47], namely
the so-called primal graph representation®, proved successful since it is employed in the
latest GPGPU-based implementation for MC, referred to by GPUSAT?2 [29], but also in
other solvers [8, 34, 27, 15, 16]. In this work, we take up this idea and systematically study
improvements from the perspective of algorithm engineering in order to significantly speed up
counting models of a propositional formula on GPGPUs. Our approach is an implementation
that follows the existing implementation GPUSAT?2, but we use the GPGPU framework
CupA instead of OPENCL since CUDA enables a more detailed and systematic performance
analysis and hardware monitoring capabilities.

Contributions. We present a novel system GPUSAT3? that comprises the following new
techniques and contributions. (i) We introduce a new clause representation, called compact
clause form (CCF), that allows us to check whether a partial assignment satisfies a clause by
only two binary bit operations that can be efficiently implemented in hardware. (ii) Then,
we enhance dynamic programming, which is designed to combine results (tables) of “local”
computations, by global caching. Thereby we maintain a global cache on the GPGPU that is
shared among different local tables in order to prevent copy overhead between the GPGPU
memory and main memory (RAM) whenever possible. (iii) Further, we show the benefit
of CUDA framework tuning, where we focus on quantifying the effect of pinned memory,
a technique designed for reducing transfer overhead between GPGPU memory and RAM.
(iv) Finally, we perform a study over existing libraries for computing tree decompositions in
order to quantify the effect of those decomposers on the actual solving performance. These
techniques and variants are systematically analyzed and presented individually. Then, the
performance results involving the full system GPUSATS is given at the end. For the sake of
presentation, related work is discussed in-place where suitable and applicable.

2 Preliminaries

Let a be a bit vector (b, ...,b,_1), which is a sequence consisting of n many bits that are
integers between 0 and 1. Then, we refer to the i-th bit for position 0 < i < n by «a; = 1b;.
We use the bit-wise XOR operator & and the bit-wise AND operator & in the usual meaning.
Further, we define the integer value of a by val(a) := > ic 1 2" - ;.

Propositional Satisfiability (SAT)

A literal is a propositional variable z or its negation —x. A clause is a finite set of literals,
interpreted as the disjunction of these literals. A (CNF) formula is a finite set of clauses,
interpreted as a conjunction of the clauses. Let F' be a formula. Then, we refer to a

! The primal graph of a propositional formula distinguishes as vertices the variables of the formula and
there is an edge between two variables, whenever those variables appear together in at least one clause.
2 GPUSATS3 including benchmark data [26] is open source; available at github.com/vroland/GPUSAT.


https://github.com/vroland/GPUSAT

J. K. Fichte, M. Hecher, and V. Roland

set S C F by a sub-formula (of F). For a clause ¢ € F, let var(c) consist of all variables
occurring in ¢ and var(F) := |J,cpvar(c). Without loss of generality, we assume for
every ¢ € F that |c| = |var(c)], i.e., no variable appears twice in a clause. An assignment
(over V. C var(F)) is a mapping A : V — {0,1}. The formula F[A] under A is obtained by
removing all clauses from F' that contain a literal set to 1 by A and removing from remaining
clauses all literals set to 0 by A. An assignment A is satisfying if F[A] = (. The problem
MC asks to count the number of satisfying assignments over var(F) of a formula F.

» Example 1. Counsider the formula F' := {c1, o, c3} with ¢; 1= aVbV—c¢, co := =bV—a, and
cs :=aV —~d. Then, A; :={a+— 1,b+— 0} and As := {a+— 0,c+— 0,d — 0} are satisfying,
i.e., F[A1] = F[A3] = 0. In total, there are 7 satisfying assignments over {a, b, ¢,d} of F.

Tree Decompositions (TDs), Treewidth, and Dynamic Programming

A tree decomposition (TD) of a given graph G is a pair T = (T, x) where T is a rooted tree
and x is a mapping which assigns to each node ¢t € V(T) a set x(t) C V(G), called bag, such
that: (i) V(G) = U,ev () x(t) and E(G) € {{u,v} [t € V(T),{u,v} C x(¢) }; and (ii) for
each r,s,t € V(T'), such that s lies on the path from r to ¢, we have x(r) N x(¢) C x(s). We
let width(7) := max;cy 7y |[x(t)| — 1. The treewidth tw(G) of G is the minimum width(7)
over all TDs T of G. The primal graph G [47] of a formula F has as vertices its variables
and two variables are joined by an edge if they occur together in a clause of F'. For brevity, we
refer by treewidth of a formula to the treewidth of its primal graph. For a given node ¢t € T of
the primal graph G, we let F}, := {c|c € F,var(c) C x(t) } be the clauses entirely covered
by x(t). The formula F<, denotes the union over all F; for all descendant nodes t € V(1)
of s. In other words, F<, is the sub-formula of F' containing all clauses entirely covered by a
bag x(s) for s and any of its descendant nodes.

» Example 2. Recall F' from Example 1. From the primal graph Pr of F'a TD T of Pp with
nodes t1, t2, t3 can be constructed, where t3 with x(t3) = {a} joins t1, to with x(¢1) = {a, b, ¢}
and x(t2) = {a, d}. Intuitively, T allows to evaluate F' in parts. So, when evaluating F' = F<y,,
we split into F<;, and F<y,, which refer to {c1,c2} and {c3}, respectively.

A solver based on dynamic programming for formulas evaluates the input formula F' in
parts along a given TD of the primal graph Gr. For each node t of the TD, results are
usually stored in a table 7:. The approach works in four steps as follows:

1. Construct the primal graph G of the input formula F'.

2. Heuristically compute a tree decomposition 7 = (7', x) of the primal graph Gp.

3. Traverse the nodes in V(T in post-order. Thereby, at every node ¢, run an algorithm
for computing table 7. This algorithm takes as input the bag x(t), the sub-formula F,
and previously computed tables for the child nodes of ¢t. Such a table 7 comprises rows
of the form (A4, c), where A : x(t) — {0,1} is an assignment and ¢ is an integer used
for counting. Each row (A4, c) indicates that there are ¢ many satisfying assignments
over var(F<;) of F<; that extend A. These pairs are carefully maintained for all the
different types of nodes; for details we refer to the literature [47, 29].

4. Print the model count by interpreting the result 7, for the root n of T.

The worst-case runtime of such an algorithm for model counting is in O(2¥kdN), where
k denotes the width of the primal graph, N refers to the number of nodes in the tree
decomposition, and d denotes the maximum number of occurrences in the clauses of the
input formula F over all variables of F' [47].

24:3

CP 2021



24:4

Parallel Model Counting with CUDA

General Purpose Graphics Processing Units (GPGPUs)

General purpose computing on graphics processing units (GPGPU) is the practice of ex-
ploiting the massively parallel computing capabilities of graphics cards for non-graphical
and scientific applications. Historically, graphics hardware and drivers have been built with
only graphics rendering pipelines in mind [52]. But with a growing demand for accelerating
data-parallel programs, GPGPU frameworks like CuDA and OPENCL emerged. These
offer APIs for writing GPGPU programs (functions) without relying on graphics primitives.
Although frameworks aim to make programming applications for CPU and GPGPU more
seamless, their memory spaces and instructions are distinct: While the CPU can access the
host memory (RAM) and executes the host program, the GPGPU can only access GPGPU
memory (GPGPU RAM) and execute functions called kernels. The functionality of CuDA
and OPENCL largely overlaps. However, OPENCL is standardized and supports running
CPUs as well. In contrast, CUDA is a proprietary platform for NVIDIA GPGPUs only, but
CubaA is often perceived as a more mature ecosystem. This comprises tools like profilers and
runtime checkers, learning resources, but also driver support.

Dynamic Programming With GPGPUs. Dynamic programming as described above is
implemented in the solver GPUSAT2 [29], which heavily uses OPENCL and introduces
a framework for efficiently solving MC in parallel on GPGPUs. For GPUSAT?2, besides
a simple implementation of storing tables via a fixed pre-allocated memory block, called
ARRAY data structure, the authors have proposed an advanced data structure, referred to
by TREE, which is a binary search tree that can be manipulated in parallel by the GPGPU.
This solver also provides a heuristic that is used internally in order to decide whether to use
ARRAY or TREE based on a tree decomposition width threshold.

Benchmarks

In order to systematically analyze performance, we use the following instances and hardware.

Benchmark Instances. We use the 200 instances of track 1 (private and public) of the 1st
International Competition on Model Counting (MCC 2020) [22] as the MCC2020-TrACK]1
benchmark. For our final evaluation, we additionally incorporate the instances of track 2 of
MCC 2020 with variable weights stripped, making them unweighted. The 400 instances of
this combined benchmark set are referred to as MCC2020-TRACK14-2.

Benchmark Hardware. We run benchmarks on three different machines. Server: 2x Intel
Xeon Silver 4112@2.60GHz 128GB RAM, NVIDIA GeForce GTX 1180 8GB GPGPU RAM,
Ubuntu 18.04 LTS, CubpaA 9.1.85. Desktop: Intel Core i7-9700@3.00GHz 16GB RAM,
NVIDIA Quadro RTX 4000 8GB GPGPU RAM, Ubuntu 18.04 LTS, CubaA 11.0. Cluster:
Cluster of 44 nodes; 2x Intel Xeon E5-2680v3@2.50GHz, 256GB RAM, RHEL 7.9.

SERVER is used for running full benchmarks with various decomposers, as it provides
an environment that is not shared with other users and enough memory resources. For
detailed profiling, DESKTOP is employed due to the availability of a more current driver and
local access to the machine. CLUSTER is chosen for comparing different tree decomposition
libraries since it provides the resources needed to finish a massive amount of runs quickly.



J. K. Fichte, M. Hecher, and V. Roland

3 Algorithm Engineering and Hardware Utilization

While the existing GPGPU-based system GPUSAT?2 delivers decent performance compared
with state-of-the-art model counters, a number of possible improvements as well as hardware-
specific potentials are left unexplored. In this section, we outline several algorithmic as
well as implementation-specific improvements for Step 3 of dynamic programming on tree
decompositions as defined in the preliminaries. We then systematically evaluate the impact
of these improvements, which finally leads to a new system GPUSAT3. Since GPUSATS3 is
based on CUDA, we can leverage tools and suitable workflows for a systematic analysis.

Next, we introduce a compact representation of clauses as bit vectors that allows us
to efficiently check for satisfiability on GPGPU hardware. Then, we describe a global
caching scheme for result tables such that GPUSAT3 avoids superfluous transfers between
host memory (RAM) and GPGPU memory (VRAM). Lastly, we show that using the so-
called pinned memory of CUDA, while introducing some overhead, benefits performance by
increasing data transfer speed between host and GPGPU.

Compact Clause Form (CCF)

Clearly we cannot hope that GPUSAT3 solves instances of arbitrarily large treewidth. Since
GPUSATS3 is based on dynamic programming aiming for utilizing reasonably small treewidth,
we therefore restrict ourselves to instances below a reasonable threshold like treewidth 64.
This allows us to build a clause data structure that is more optimized for satisfiability testing
on GPGPUs. Assume a formula F', a TD T = (T, x) of G, and a node ¢ of T
Interestingly, every clause ¢ € F; can then be represented with two bit vectors, namely
an occurrence vector occ and a sign vector sign, which both combined correspond to the
compact clause form (CCF) of c¢. To the end of defining this compact representation, let
idx : x(t) = {0,...,|x(t)]—1} be a bijective function that assigns each variable v € x(¢) a
positional index from 0 to the number |x(t)|—1 of variables minus one, thereby adhering to
some fixed total ordering of variables in (). Since idx is bijective, we denote the inverse
of idx by idx~'. Then, the occurrence vector occ(c) for ¢ is a sequence consisting of |x(t)]
many bits such that whenever v € var(c), the corresponding bit occ(c)iax(y) is set to 1 (and
to 0 otherwise). The sign vector sign(c) for ¢ is of the same form as the occurrence vector
such that sign(c)iqx(v) is set to 1 whenever —v € c. Otherwise, bit sign(c)iqx(.) is set to 0.
In order to test if an assignment satisfies a set of clauses in CCF, assignments must be in
a compact representation as well. Let A be an assignment over x(t). Then, we compactly
represent A as an assignment vector A such that the i-th bit 4; of A for 0 < i < |x(t)]
corresponds to the truth value of the variable at position i in A, i.e., 4; = A(idx1(4)).

» Proposition 3 (Correctness of CCF). Assume a formula F', o« TD T = (T, x) of Gr as well
as a node t of T. Let further ¢ € Fy be a clause and A be any assignment over variables x(t).

Then, A satisfies c if and only if val((A & sign(c)) & oce(c)) > 1, where & and & denotes
the bit-wise XOR and AND operator, respectively.

» Example 4. Consider the clauses from Ex. 1: ¢; = aVbV—¢, cg = -bV —a, and c3 = aV —d.
Observe that for the given total ordering (a, b, ¢, d), there is only one unique positional index
function idx, defined by idx(a) := 0, idx(b) := 1, idx(¢) := 2, and idx(d) := 3. Then,
the corresponding bit vectors are occ(cy) = 1110, occe(eg) = 1100, oce(cz) = 1001 and sign
vectors are sign(cy) = 0010, sign(cg) = 1100, sign(cz) = 0001.

24:5

CP 2021



24:6

Parallel Model Counting with CUDA

Now, let us check the assignment A = {a — 0,b — 1,¢ — 0,d — 1}. In bit vector
representation, this corresponds to A = 0101. For ¢;, we have that (A & sign(c;)) & oce(ey) =

(0101 ¢ 0010)&1110 = 0110. Since val(0110) = 6 > 1, A satisfies ¢;. Conversely, (A &
sign(cg) & oce(es) = (0101 @ 0001)&1001 = 0000 indicates that A does not satisfy cs.

Observe that if we restrict ourselves to instances of treewidth below 64, the length of all
involved vectors discussed above is bounded by 64 as well. So, testing if a truth assignment
satisfies a clause can be efficiently implemented using 64-bit integers and bit-wise logic
operators on top. More concretely, a satisfiability check can be implemented on any 64-bit
hardware by only using one bit-wise XOR and one bit-wise AND operation for each clause
in F}. Interestingly, both occurrence and sign vectors can be computed once per TD node ¢
and clause in F; before actually invoking the GPGPU.

By carefully choosing the variable ordering (idx), we can ensure that the unique id of each
parallel GPGPU computation unit performing such checks is a prefix of the assignment vector
A. Consequently, the assignments tested in a single such computation unit only differs by a
few of their least significant bits, allowing the assignment vector to be efficiently constructed
by combining the unique id with a counter variable.

Achieving a form of parallelism using bit-wise instructions was used in the context
of SAT solving [35]. There, a single instruction operates on multi-bit variable values
representing multiple assignments. In our #SAT solver, multiple instruction operate on
multiple assignments where each thread works on exactly one assignment. We obtain the
assignments immediately from the thread id. Our compact representation of clauses minimizes
thread divergence by taking a constant number of instructions for varying number of literals
in a clause. In fact, small thread divergence is important for effective performance when
running massive parallel execution on the GPGPU and low overhead of the used caches.

Reducing GPGPU Copy Overhead via Global Caching

In the preliminaries, we outline a model counting algorithm based on dynamic programming.
The implementation in GPUSAT3 contains some steps that are performed on the GPGPU
and others on the host. Thus, for each node in the tree decomposition, one or more kernels
are executed which compute a table associated with the current node. Intuitively, if a kernel
invocation uses a table produced by a previous kernel, this data can remain in VRAM and
does not have to be copied to the host. If ideally VRAM was unlimited, no intermediate
memory transfers to the host memory (RAM) would be needed, except for the final result.
However, when tables become too large to store in VRAM alongside the next table, tables
are divided into multiple table chunks per node in order to make solving such nodes feasible.
Table chunks that are not currently needed are moved to main (host) memory, which is
typically larger than the available VRAM.

Copying tables from and back to the VRAM can take a significant portion of the overall
execution time. This leads to the idea of global caching: GPUSATS3 tries to keep whole
tables or table chunks in a cache that is managed globally, in the sense that it potentially
contains tables for several tree decomposition nodes at the same time. Thus, in the case that
some or all child tables chunks already reside in VRAM when solving a node, i.e., they are
cached, GPUSATS3 does not need to transfer them from host memory for solving. After
a kernel execution, the result is left in the cache if the table is needed later in the solving
process. More precisely, GPUSAT3 prefers to not transfer table chunks to the RAM until
solving is completed; instead tracking a repository of chunks in VRAM.



J. K. Fichte, M. Hecher, and V. Roland

12 4| @ ARRAY—pin—cache
10 4| ¥ TREE—pin—cache

# of instances (X24)
D
1

4 A ’ , .

.1 B B 7 N

O T T T T T T T T T T
0% 20% 40% 60% 80% 100%

Figure 1 Histogram of percentages of GPGPU runtime spent on data transfers (memcpy) grouped
in steps of 10% without global caching, using either TREE or ARRAY data structure.

A chunk is deleted from the cache if (a) it is either no longer needed for solving subsequent
nodes or (b) the VRAM is used otherwise. The latter (b) is the case if a new table needs
more VRAM than available. In this scenario, all cache entries are evicted, since as much
VRAM as possible is needed for solving the current node. This effectively degrades the cache
to a local one, as only the currently needed table chunks can be kept. However, if tables are
in relation to the available VRAM sufficiently small, the algorithm can benefit from keeping
tables from both branches of a join node in the VRAM during the traversal. Ideally, this
prevents intermediate transfers from the VRAM to host memory, except for the final results.

Evaluation. To investigate the need for global caching, we analyze the following hypothesis.

» Hypothesis 1. GPUSATS3 spends large portions of runtime on GPGPU data transfers.

To evaluate Hypothesis 1, we use the NVPROF profiler to determine how much GPGPU
runtime is spent for copying data to and from the GPGPU. We relate this time to the
total time spent in GPGPU functions during the solver run, as recorded by NVPROF. This
represents the proportion of GPGPU runtime spent on data transfers instead of kernel
executions. For small instances, this ratio may not be representative, as their data structures
are typically very small. Constant costs like runtime initialization and memory allocation
could further distort the results in such cases. Consequently, we only consider instances with
a total solver runtime of at least 5s in one of the configurations. In each following comparison,
only instances successfully solved by both compared configurations are included.

First, we compare this ratio for GPUSAT3 with caching and pinned memory disabled
for both the ARRAY and TREE data structures, executed on DESKTOP with an arbitrary
but fixed decomposition seed. Pinned memory is a technique to speed up data transfers
between GPGPU and host, which is disabled here and will be explained in more detail in the
next subsection. MCC2020-TRACK]1 with a timeout of 600s is chosen as it contains many

instances with sufficient treewidth to necessitate transfers between GPGPU and host memory.

This allows us to get a baseline for the cost of data transfers without any optimizations. In
Fig. 1, we show the distribution of GPGPU runtime in data transfers among the applicable
instances of MCC2020-TRACK]1 as a histogram. Clear differences are visible between the
TREE and ARRAY data structures: With TREE, two clusters are visible at < 20% and
50% — 70%. No instance uses more than 70% of GPGPU runtime in memcpy. With ARRAY,
at least 60% is used, with the highest number of instances spending 80% — 90%. Based on
this experiment, we can confirm that a large portion of runtime is taken up by data transfers,
assuming most work is done on the GPGPU. The TREE structure results in smaller relative

24:7

CP 2021



24:8

Parallel Model Counting with CUDA

= 10 . K 121 ~

N @ ARRAY—pin—cache AT {4 TREE—pin—cache
\; 8 | o ARRAY —pin+-cache \; X TREE—pin+cache
S 64 3

= =i

< <

% 4 5

= B

5 27 o

:H: 0 - T T T T T T :H:

0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Figure 2 Histograms of percentages of GPGPU runtime spent in memcpy with and without
caching. Only instances of MCC2020-TRACK] which are solved in both configurations with a
runtime of at least 5s in one are considered. Results are given for the ARRAY and TREE data
structure, (left) and (right), respectively.

transfer times than using ARRAY. This could be due to their smaller average size [29], longer
kernel runtimes or a combination of both. Nevertheless, a large portion of instances spend a
proportion of at least 40%, as well.

To alleviate this issue, we propose global caching as described above. In order to evaluate
the effectiveness of our global cache, which avoids data transfers and reuses (cached) tables
within the GPGPU memory, we consider the following hypothesis.

» Hypothesis 2. Caching reduces the proportion of time GPUSAT3 spends on data transfers.

We assess Hypothesis 2 with the same method as previously used for Hypothesis 1, where
we run GPUSATS3 for both data structures, with and without caching. The results are
presented in Fig. 2, which confirms this hypothesis: Considering the ARRAY configuration,
the number of instances spending 80% — 90% in memcpy is greatly reduced, many presumably
shifting to the 70% — 80% bucket. Interestingly, while without caching no instance spent less
than 60% of its runtime on data transfers, a number of instances achieves using less than
10% with caching. In these cases, global caching avoids most transfers altogether. This is
in-line with our expectations: While the usefulness of the global cache is degraded when
all GPGPU memory is needed for solving, instances which mostly produce small tables can
benefit significantly. With the TREE data structure, we see a similar trend of instances
spending less time in memcpy. However, the effect is not as strong as with ARRAY. Again,
we believe this is due to the TREE already using GPGPU memory more efficiently, leading
to smaller transfers which take less time relative to kernel executions.

The Effect of Cuda Pinned Memory

To speed up data transfer between host memory and GPGPU memory, the CUDA driver offers
an APT that allows the use of pinned memory pages (also known as page-locked memory)
when allocating host memory [43, 10]. Pinned memory pages reside in a fixed physical
location of the host memory and cannot be moved, e.g., swapped out, by the operating
system (OS). This guarantee allows the CUDA driver to perform data transfers to and from
these regions through its direct memory access (DMA ) engine. Through DMA hardware,
neither the CPU, nor the OS are involved in transferring data. So, no checks for the validity
of memory pages through the OS kernel are needed, since physical page locations are fixed.

Pinned memory has already been utilized in the literature. Quirem et al. [45] implement
a GPGPU-accelerated version of an algorithm used in the HMMER framework [30] for
identifying homologous protein sequences using CUDA. The authors report a 20% speed



J. K. Fichte, M. Hecher, and V. Roland

© 10 , = 14 :

A BN ARRAY+pin—cache £ 19 4 TREE+pin—cache

\m/ 8 | wmsu ARRAY —pin—cache \: 10 7 #Z TREE—pin—cache

g el I |

5 g A

7 % 67 : 2

£ 24 aE |

b B 24 - T IR = B |

:H: :H: 0 T T T T — T T T T T T T
0% 20% 40% 60% 80% 100% 0% 20% 40% 60% 80% 100%

Figure 3 Histograms of percentages of GPGPU runtime spent on data transfers (memcpy) grouped
in steps of 10%, with and without pinned memory. Only instances of MCC2020-TRACK1 which are
solved in both configurations with a runtime of at least 5s in one are considered. Results are given
for both the ARRAY (left) data structure as well as the TREE (right) data structure.

up by using pinned memory. Similarly, Fatica [20] demonstrates significant performance
improvements for LINPACK with pinned memory. However, allocating pinned memory incurs
additional overhead compared to regular allocations of main memory [32]. Additionally, if
a large portion of the physical system memory is pinned, overall performance is degraded.
Moreover, when using pinned memory, the CUDA driver enforces a shared virtual address
space for allocations in host memory and GPGPU memory, which is referred to as CubDA
Unified Memory. Aside from pinned memory, this feature is used for handling data transfers
between CPU and GPGPU memory implicitly by the driver, as a convenience for the
programmer. Consequently, the overhead of unified memory applies as well. Jarzabek et
al. [37] investigated the performance of unified memory, overall finding it to have only a
small impact. Nevertheless, especially many small allocations increased the performance
overhead. We mitigate the performance degradation of repeatedly allocating and freeing
pinned memory by employing a so-called sub-allocator. This sub-allocator is responsible for
caching pinned memory allocations, handing out memory allocations from an existing pool
and only allocating additional memory when needed [36].

Evaluation

We evaluate the potential for performance improvements through achieving faster data
transfers which is counteracted by the additional overhead of pinned memory allocation.

The Potential of Pinned Memory. As a first step, we consider the potential speedup of
pinned memory without considering the cost for its allocation.

» Hypothesis 3. With pinned memory, GPUSATS3 reduces the proportion of time spent on
copying data to and from the GPGPU.

In order to analyze this hypothesis, we measure the proportion of time the GPGPU
spends for memory transfers with and without pinned memory for both the ARRAY and
TREE data structures. The experiment is conducted on DESKTOP with a maximal runtime
of 600s for each instance of MCC2020-TRACK1. Chunk caching, i.e., leaving solution data
in GPGPU memory if possible, is disabled to measure the impact of pinned memory in
isolation. The results are shown in Fig. 3 as histograms of the ratio of GPGPU runtime used
for copying memory to the total GPGPU runtime, given in percent. We apply the same
criteria for selecting instances for the comparison as in Sect. 3. For the ARRAY data structure
(left), we see that without pinned memory, most memory transfers take up as much as 80%

24:9

CP 2021



24:10

Parallel Model Counting with CUDA

to 90% of the GPGPU runtime on some instances. All instances spend at least 60% for
copying memory by means of memcpy. With pinned memory, the majority consumes around
50% to 60% GPGPU runtime for copying, some less, with at most ~ 80%. When using the
TREE data structure (right) and no pinned memory, the proportion is generally lower and
corresponds to the baseline distribution established in Fig. 1. With pinned memory, the
distribution shifts to spend significantly less time in memcpy. Additionally, many instances
have a copy to execution time ratio below 10%, while no instance has more than 50%. In
conclusion, we see that pinned memory reduces the time used for data transfers significantly
regardless of data structure. The smaller size of the TREE data structure compared to ARRAY
results in a smaller proportion of GPGPU runtime spent copying.

The Benefit of Pinned Memory. For the benefit of faster memory transfers to result in
improved solver performance, it needs to outweigh the overhead of pinned memory allocation.

» Hypothesis 4. Employing pinned memory decreases the runtime of the solver GPUSATS3.

To test this hypothesis, we consider the runtime for the instances of MCC2020-TRACK1
with and without pinned memory. We run GPUSATS3 for both the ARRAY and the TREE
data structure on MCC2020-TRACK]1 for up to 600s on SERVER. Global caching is enabled
to determine if pinned memory further improves solver runtime on top of caching. In Fig. 4,
we compare the differences in runtime on a per-instance basis with an arbitrary but fixed
decomposition seed. For instances where the runtime differs by more than > 1% of the
unpinned runtime, the difference is marked by an arrow as described in the figure caption.

With both the ARRAY and TREE data structures, especially long-running instances
benefit from pinned memory, while the allocation overhead amounts to an overall longer
runtime on small instances. The configuration using the ARRAY data structure (left) benefits
more from pinned memory on instances with long runtimes compared to the TREE (right)
configuration. We attribute this to the capability of the TREE structure to grow as needed,
leading to smaller transfers than with the ARRAY data structure on average. Conversely,
the size of ARRAYs grows with the number of variables in a node regardless of its solution
count. Moreover, fewer small instances are negatively impacted by pinned memory when
using TREE, presumably because of smaller allocations incurring less overhead.

Overall, we have shown that pinned memory can speed up the solving process for instances
where large memory transfers are needed. For small instances and depending on the data
structure, its additional allocation overhead can outweigh the faster transfer times however.
By comparing the improvement in data transfer times seen in Fig. 3 with overall solver
performance in Fig. 4, we see that this mostly translates to improvements in runtime for
larger instances, where the sub-allocator can serve most allocations. Thus, the addition of
pinned memory is beneficial in most cases, although using the TREE data structure often
mitigates the need for large memory transfers, lessening the impact of pinned memory.

4 The Influence of Decomposition Libraries

In this section, we focus on Step 2 of the dynamic programming approach, as defined in
the preliminaries. Thereby, we compare several available implementations for finding tree
decompositions and their effect on solver runtime in order to efficiently employ these libraries.



J. K. Fichte, M. Hecher, and V. Roland

n n
o % ARRAY+pin+cache © % TREE+pin+-cache ¥
g | ARRAY-pin+cach g | TREE—pin-+cach 3
B -pin+cache R —pin+-cache
= 102 . p M = 102 . p x%mx
5 ] j 3
= ] g ] 3
£ 10! 4 ; = 10 4 Joc”
3 stk 2 i
a Tomanicsaomamr e a T ey
o T T T - T T T
0 20 40 60 inst. 0 20 40 60  inst.

Figure 4 Comparison of runtime over the instances of the MCC2020-TRACK] data set with
and without pinned memory. Downward (green) arrows denote an improvement in runtime with
pinned memory, upward (red) arrows indicate a longer runtime with pinned memory. Results for
the ARRAY and TREE data structure are given (left) and (right) respectively.

Finding Tree Decompositions

Quickly finding a tree decomposition with a small width is crucial for the performance of
GPUSATS3. Utilizing a tree decomposition of smaller width not only improves worst-case
runtime of our algorithm, but also exponentially decreases memory requirements. This
is paramount for the practical efficiency: Once certain tables do not fit into the GPGPU
memory, larger chunks of data have to be swapped to the host memory (RAM), thereby
increasing processing time. Inconveniently, finding the treewidth of a graph represents a
NP-hard problem itself [2]. An algorithm for obtaining tree decompositions of small, bounded
width in linear time has been developed, but its runtime complexity contains constant factors
too large for practical use [4]. To the best of our knowledge, there are no practically feasible,
fast algorithms with such low time complexity. Thus, the time spent on finding a tree
decomposition of low treewidth and running the dynamic programming algorithm must be
balanced. To find a suitable decomposer for computing tree decompositions we compared the
3 top-ranked submissions to the heuristic competition of track A of the “Parameterized Algo-
rithms and Computational Experiments Challenge” in 2017 (PACE17) [13]: tamaki by Keitaro
Makii, Hiromu Ohtsuka, Takuto Sato, Hisao Tamaki (Meiji University), github.com/TCS-
Meiji/PACE2017-TrackA, flowcutter [50] by Ben Strasser (Karlsruhe Institute of Technology),
and htd [1] by Michael Abseher, Nysret Musliu, Stefan Woltran (TU Wien). As a first step,
we compare the obtained widths and speed of the three decomposers above.

» Hypothesis 5. Given a long processing time, the rank by best decomposition width reflects
the placement in PACE17 in MCC2020-TRACK]1: 1. tamaki, 2. flowcutter, and 3. htd.

In Fig. 5 (left), we compare the lowest width found by the implementations in 600s for
the MCC2020-TRrRACKI instances on CLUSTER. For each instance and each decomposer, we
obtain 10 decompositions with varying seeds. In the following analysis, the best result of these
runs is considered. Although flowcutter ranked better than htd in PACE17, it consistently
produces higher widths than htd and tamaki in our benchmark. Note however, that we
use the more recent htd 1.2. The decomposer tamaki generates lower widths than htd for
most instances, with some outliers. For small widths up to = 30, the difference between
htd and tamaki is noticeable but small for most instances. With wider widths, flowcutter
performs much worse than htd and tamaki. Overall, the relative performance of htd and
tamaki matches our expectations of Hypothesis 5. However, flowcutter performs significantly
worse than its competitors, which might be due to the size and structure of our instances.

24:11

CP 2021


https://github.com/TCS-Meiji/PACE2017-TrackA
https://github.com/TCS-Meiji/PACE2017-TrackA

24:12

Parallel Model Counting with CUDA

= e vbest tamaki A htd + flowcutter < e vbest tamaki A htd + flowcutter
=) =)
e 100 - 3 100 "y
z z gt
=] = + E‘W}W +
KS 2 L T
] e | et s
g 50 g 50 ﬁﬁ - *f g ey
N o .
g ; g
S e Q
é 0 1 T T —é O T T
0 50 inst. 100 150 0 50 inst. 100 150

Figure 5 Best decomposition width for MCC2020-TRACK]1 instances of different implementations;
ordered by asc. best width. The plots show the widths obtained after 600s (left) and 15s (right).

As htd was chosen in GPUSAT?2 for being fast, we suspect the above results to change
when restricting the implementations to shorter runtimes. Thus, we repeat the above
analysis in Fig. 5 (right), but consider the respective best result found after only 15 seconds.
GPUSAT3 with htd usually takes less than one second for computing the tree decomposition
for most solvable instances of MCC2020-TRACK1. Nonetheless, we believe that 15s would
be a realistic time budget for implementations that cannot be tightly integrated into the
solver as a library. Compared with Fig. 5 (left), we see the advantage of tamaki over htd
shrinking. For some instances, htd produces smaller decompositions than tamaki, which
generates either a very wide or no decomposition at all. Decomposer flowcutter still produces
the widest decompositions for most instances. Consequently, tamaki generates the best results
for most instances, even with constrained time. However, there are cases where only htd
produces a decomposition of usable width. Since the advantage of tamaki is small at low
runtimes and htd is available as a C++ library, we keep it as the primary implementation
in GPUSATS3 for convenience. In the future, a portfolio of implementations with a tuned
heuristic of the time spent searching for a decomposition could yield better results [17].

The Performance Impact of Decompositions

Recall that we have already investigated the benefit of finding tree decompositions of small
width, based on worst-case time and space bounds. To justify this claim, we now explore the
performance impact of the chosen tree decomposition during solving in practice.

» Hypothesis 6. The solving time of GPUSATS3 strongly correlates with the decomposition
width and only to a lesser extent depends on the instance.

We investigate the connection of decomposition width and solving time by creating a set of
different tree decompositions for select instances. To find suitable instances, we first compute
10 tree decompositions per instance of MCC2020-TRACK1 with each of the implementations:
tamaki, flowcutter and htd. Each run is allowed 600s of wall clock time on CLUSTER. From
MCC2020-TRACK]1, we select a subset of instances where we find at least one decomposition
with a width between 25 and 35. These bounds are chosen because instances with a width
larger than 35 are mostly unsolvable on our hardware. Conversely, if the decomposition
width is too low, the solving process is usually very fast and dominated by set-up time. Thus,
measuring runtime differences is not meaningful outside of this range. By applying this
criterion, we obtain a set of 62 instances for our evaluation. Then, we measure the solving
time for each decomposition of the selected instances with GPUSATS3 on SERVER. The
version of GPUSAT3 used in this experiment already includes the improvements introduced
in the course of this paper. For each instance, 10 decompositions are obtained by each



J. K. Fichte, M. Hecher, and V. Roland

FOOGK Hoieke bl bhi HHHH bR

) X tamaki tamaki -
10° 91 + htd 1024 . hia ¥ 30

+  flowcutter % £ . +  flowcutter »\I A )** */
>4 b it oHe & i

100 i X .fi 10° - + %{"' :__% A A - 20
- K¢ 35:':4. - A *“ est wi 3

T T T T T 1

10 w 20 30 40 0 inst. 20 40 60

Figure 6 GPUSAT3 solving time ¢, in seconds by decomposition width w (left) and by instance
(right). On the left, runs of the same instance are colored in the same color, but different instances
may have the same color. On the right, instances are ordered by their respective lowest decomposition
width, which is marked as a dashed grey line.

decomposer, amounting to 1860 decompositions in total. Since we are interested in the
behaviour of the GPGPU solving algorithm rather than overall runtime compared to other
solvers, we use the time spent in the solving step as reported by GPUSAT3. This time is
referred to by solving time and excludes parsing and preprocessing steps.

In Fig. 6 (left), we show the results of this experiment as a plot of solving time and
decomposition width, colored by instance. We observe a general trend of increasing solving
time with larger decomposition width. Moreover, the plot can be roughly divided in three
sections: Up to a width of ~ 22, the solving time consistently stays below one second, without
major variations for different widths. For widths between = 23 and =~ 38, solving time
correlates with decomposition width. However, large differences in solving time occur among
decompositions of equal widths, sometimes by multiple orders of magnitude. For larger
decompositions, all runs either time out or exhaust the resources of SERVER, which is also
shown as a timeout. This observation supports our focus on instances with decompositions
of widths between 25 and 35 for this experiment: The runtime for small decompositions is
dominated by set-up costs and parallel GPGPU resources are not saturated, thus it does not
vary significantly. For decompositions of high width, resource and time limits are quickly
exceeded. While this experiment clearly demonstrates a correlation between decomposition
width and solving time as indicated by theoretical bounds, there is a large spread of runtimes
for decompositions of the same width. For example, runtimes for the width 28 span from
sub-1s to almost 100s. When looking at the distribution of instances, which are indicated
by color, we see that runs of the same instance often form clusters. Through the different
marker symbols, we see that distinct clusters of the same color mostly originate from different
composers. Conversely, most clusters only contain runs of one decomposer and instance.
This indicates that the variance in runtime is low for the same instance and decomposer.
However, this view does not immediately reveal solving times of all runs of the same instance.

Thus, we visualize this perspective in Fig. 6 (right). The plot shows solving times for
every generated decomposition of each instance as specified in the figure caption. Similarly
to the by-width perspective Fig. 6 (left), runtimes for decompositions generated by the
same decomposer often appear clustered. However, this effect appears less pronounced for
decompositions generated by flowcutter. For many instances, tamaki appears to generate the
best-performing decompositions. This is in line with our findings above. Some instances,
especially those of smaller width, show very similar runtimes for all decompositions. However,
in most cases, runtimes are clearly separated for the decomposers. As instances are sorted by
their best generated decomposition width, a trend of increasing runtime with width is visible.

24:13

CP 2021



24:14

Parallel Model Counting with CUDA

1 400 T —] ..o - e
- 3 Teaas NUS-BAREGANAK
% 10 § 1 c2d
g ] = GPUSAT2
2 ] £ 300 1 ] GPUSAT3
£ 10% 4 2 I da
z E -

3 ) {73 GPUSAT3+p4
a g 200 14 GPUSAT3+02D
< 101 n —O' GANAK
9] a |
E S 100 14
I W

10" 5
T T 0 T T T T
10* 10° 0 500 1000 1500
GPUSAT3 runtime (s instance runtime [s]

Figure 7 Performance of GPUSAT3 compared GPUSAT?2 and other state-of-the-art systems.
In the cactus plot (right) instances are sorted for each solver individually, according to ascending
runtime. The scatter plot (left) compares instance runtimes of GPUSAT3 with GPUSAT2.

This indicates that the width of a decomposition is a better predictor for solver runtime
than the given instance, as stated in Hypothesis 6. Nonetheless, runtimes vary among
decompositions of the same width, so treewidth is not the sole estimate for instance hardness
of GPUSATS3. Thus, detailed structural studies are left for further research, cf. [41].

5 Overall Results

Next, we evaluate the combined result of the presented techniques above by comparing the
performance of GPUSAT3 to GPUSAT?2, p4 [39], ¢2D [11], NUS-BAREGANAK [22], and
GANAK [49]. The systems D4, ¢2D, and NUS-BAREGANAK are among the best solvers of
the Model Counting Competition 2020 [22] (MCC 2020). At time of submission, the full
instance set of the 2021 competition was not publicly available [21]. D4 and ¢2D are based on
knowledge compilation, while NUS-BAREGANAK is a portfolio of solvers: First, they run the
B+E preprocessor [38], followed by GANAK. If GANAK does not produce a result in a chosen
timeout, APPROXMC [7] is used. As no external preprocessing is used with the other solvers,
pure GANAK is included for reference. We run all solvers for up to 1800s for each instance of
MCC2020-TRACK1+2 on SERVER. All solvers are used in their default configuration: ¢2D
and D4 ran with flags to enable counting, otherwise no additional arguments where supplied.
The number of solved instances, ordered by instance runtime, is shown in Fig. 7 (right).
The total number of solved instances per solver is listed in Tab. 1. For low runtimes,
GPUSAT3 establishes a clear lead over the other solvers. Given more time, GPUSAT?2
approaches GPUSAT3 and D4, ¢2D surpass GPUSAT3. NUS-BAREGANAK delivers similar
performance to ¢2D until APPROXMOC is used, where it surpasses the other solvers. Note that
the results of APPROXMC are within +30% of the correct count with 80% probability [7].
In practice, not only the number of eventually solved instances is relevant, but also the
time in which they are solved. Thus, we define a baseline set of benchmarks, which are the
instances that are solved by all solvers except pure GANAK, thereby enabling meaningful
comparisons of solving time. GANAK is excluded to maintain a meaningful baseline set
size. Tab. 1 lists the accumulated runtime for each solver, for 50%, 90%, 95% and 100% of
instances of both the baseline set and all of a solver’s respective solved instances. When
comparing with respect to the baseline set, we obtain an 8x speedup in accumulated runtime
of GPUSATS3 over GPUSAT?2, 11x over ¢2D, and over 10x speedup over NUS-BAREGANAK.



J. K. Fichte, M. Hecher, and V. Roland

Table 1 Solved instances and accumulated runtimes for the fastest n% of solved instances for
each surveyed solver. In the second row for each solver, accumulated runtime is compared with
respect to a baseline set of 161 instances, which are solved by all except GANAK. * the portfolio
includes an approximate solver, for more details see above.

Solver # inst. >t 100% >695% > 690% >t 50%
GPUSAT?2 229 5:56:06 3:05:47 1:51:28 0:09:13
...on baseline 161 2:26:36 1:00:06 0:36:32 0:06:38
GPUSATS3 247 3:05:58 0:43:40 0:27:12 0:07:01
...on baseline 161 0:18:08 0:13:00 0:11:03 0:04:51
D4 256 1 day, 2:30:28 20:57:09 16:39:14 1:59:09
...on baseline 161 15:54:58 12:09:37 9:21:47 0:53:41
c2D 265 12:25:56 8:20:19 6:21:38 0:39:15
...on baseline 161 3:29:07 2:16:12 1:40:38 0:13:16
NUS-BAREGANAK  351* 1 day, 21:47:59 1 day, 14:21:25 1 day, 7:41:05 1:33:55
...on baseline 161 3:12:16 1:57:25 1:30:17 0:17:53
GANAK 161 11:26:48 9:05:15 7:28:31 0:53:24
GPUSAT3+p4 304 7:36:44 3:36:43 1:58:31 0:09:05
...on baseline 161 0:18:08 0:13:00 0:11:03 0:04:51
GPUSAT3+c2p 309 8:45:15 4:30:15 2:35:57 0:09:23
...on baseline 161 0:18:08 0:13:00 0:11:03 0:04:51

To combine the capability of D4 and ¢2D with the speed of GPUSAT3, we define the
portfolios GPUSAT3+4+D4 and GPUSAT3+C2D to use GPUSATS3 for instances with a
decomposition width of < 35 and D4 resp. €2D otherwise. The time to calculate the width
is negligible and therefore not included in the runtime of instances solved with the portfolio
solvers. To generate the decomposition we use htd as used in GPUSAT3. As shown in
Tab. 1, the portfolio solvers are very successful: Not only do they solve significantly more
instances than D4 and C2D alone, but accomplish this in significantly less accumulated
runtime. As expected, GPUSAT3+D4 and GPUSAT3+C2D achieve the same performance
on the baseline set as GPUSAT3, which overall either solves instances extremely fast or fails.
With the availability of advanced hardware with larger GPGPU memory, we expect that
due to global caching, GPUSAT3 solves instances that currently reach a timeout. External
preprocessing as used in NUS-BAREGANAK could further improve the results, cf. [29].

6 Conclusion and Future Work

Efficiently solving problems related to propositional model counting is critical for a range
of applications such as probabilistic reasoning. To accelerate solving, the massively par-
allel computing capabilities of general purpose GPUs (GPGPUs) can be leveraged by a
dynamic programming based algorithm. Our system GPUSATS3 builds on top of ideas
from GPUSAT?2, where we implement algorithmic improvements and techniques for better
hardware utilization. We describe a new, hardware-friendly compact clause form, a global
caching strategy, as well as pinned memory, and systematically evaluate impacts on solving
performance. Additionally, we survey a range of libraries for generating tree decompositions

24:15

CP 2021



24:16

Parallel Model Counting with CUDA

and show their performance impact as well. Compared to GPUSAT2, our overall results
show that GPUSATS3 solves all instances faster, sometimes by an order of magnitude. While
GPUSATS3 is designed for bounded treewidth, it complements D4 and ¢2D in a portfolio
approach; significantly enhancing the overall performance compared to the individual solvers.
In the future, we plan on migrating portions of the solver code to GPGPU kernel code.
Additionally, we are interested in the scalability of GPUSAT3 when using multiple GPGPUs.
To the best of our knowledge, currently there is no way to limit the number of parallel compute
cores a program can utilize, preventing such experiments with a single device. Alternatives
include frequency and voltage scaling [31] and dynamic transformation to a CPU program [19],
both options have probably different scaling characteristics than the addition of parallel
compute cores. Furthermore, techniques used in other dynamic programming based solvers
such as ADDMC [15] could be brought to the GPGPU. Conversely, integrating GPUSAT3
into other solvers for solving sub-problems of small treewidth might be beneficial. Finally,
GPGPU-based approaches might be applicable to formalisms such as argumentation [23],
logic programming [33], or description logics [24], despite strong theoretical limits [25].

—— References

1  Michael Abseher, Nysret Musliu, and Stefan Woltran. htd - A free, open-source framework
for (customized) tree decompositions and beyond. In Domenico Salvagnin and Michele
Lombardi, editors, Proceedings of the 14th International Conference on Integration of Al
and OR Techniques in Constraint Programming (CPAIOR 2017), Padua, Italy, June 5-8,
2017, volume 10335 of Lecture Notes in Computer Science, pages 376-386. Springer, 2017.
doi:10.1007/978-3-319-59776-8_30.

2 Stefan Arnborg, Derek G. Corneil, and Andrzej Proskurowski. Complexity of finding em-
beddings in a k-tree. SIAM Journal on Algebraic Discrete Methods, 8(2):277-284, 1987.
doi:10.1137/0608024.

3  Fahiem Bacchus, Shannon Dalmao, and Toniann Pitassi. Algorithms and complexity results
for #SAT and bayesian inference. In Proceedings of the 44th Symposium on Foundations of
Computer Science (FOCS 2003), 11-14 October 2003, Cambridge, MA, USA, pages 340-351.
IEEE Computer Soc., 2003. doi:10.1109/SFCS.2003.1238208.

4  Hans L. Bodlaender. A linear-time algorithm for finding tree-decompositions of small treewidth.
SIAM Journal on Computing, 25(6):1305-1317, 1996. doi:10.1137/S0097539793251219.

5 Jan Burchard, Tobias Schubert, and Bernd Becker. Laissez-faire caching for parallel #SAT
solving. In Marijn Heule and Sean A. Weaver, editors, Proceedings of the 18th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2015), Austin, TX,
USA, September 24-27, 2015, volume 9340 of Lecture Notes in Computer Science, pages 46—61.
Springer, 2015.

6  Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A. Seshia, and Moshe Y.
Vardi. Distribution-aware sampling and weighted model counting for SAT. In Carla E. Brodley
and Peter Stone, editors, Proceedings of the 28th AAAI Conference on Artificial Intelligence
(AAAI 2014), July 27 -81, 2014, Québec City, Québec, Canada, pages 1722-1730. AAAI Press,
2014. URL: http://wuw.aaai.org/ocs/index.php/AAATI/AAAT14/paper/view/8364.

7  Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Algorithmic improvements
in approximate counting for probabilistic inference: From linear to logarithmic sat calls. In
Subbarao Kambhampati, editor, Proceedings of the 25th International Joint Conference on
Artificial Intelligence (IJCAI 2016), New York, NY, USA, 9-15 July 2016, pages 3569-3576.
IJCAI/AAAI Press, July 2016. URL: http://www.ijcai.org/Abstract/16/503.

8  Giinther Charwat and Stefan Woltran. Expansion-based QBF solving on tree decompositions.
Fundamenta Informaticae, 167(1-2):59-92, 2019. doi:10.3233/FI-2019-1810.


https://doi.org/10.1007/978-3-319-59776-8_30
https://doi.org/10.1137/0608024
https://doi.org/10.1109/SFCS.2003.1238208
https://doi.org/10.1137/S0097539793251219
http://www.aaai.org/ocs/index.php/AAAI/AAAI14/paper/view/8364
http://www.ijcai.org/Abstract/16/503
https://doi.org/10.3233/FI-2019-1810

J. K. Fichte, M. Hecher, and V. Roland

10

11

12

13

14

15

16

17

18

19

20

21

Arthur Choi, Guy Van den Broeck, and Adnan Darwiche. Tractable learning for structured
probability spaces: A case study in learning preference distributions. In Qiang Yang and
Michael J. Wooldridge, editors, Proceedings of the 24th International Joint Conference on
Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 25-31, 2015, pages 2861—
2868. AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/405.

Shane Cook. CUDA programming: A developer’s guide to parallel computing with GPUs.
Applications of GPU Computing Series. Morgan Kaufmann, Boston, 2013. doi:10.1016/
B978-0-12-415933-4.02001-9.

Adnan Darwiche. New advances in compiling CNF to decomposable negation normal form. In
Ramoén Lépez de Mantaras and Lorenza Saitta, editors, Proceedings of the 16th Fureopean
Conference on Artificial Intelligence (ECAI 2004), including Prestigious Applicants of Intelli-
gent Systems, PAILS 2004, Valencia, Spain, August 22-27, 2004, pages 318-322. I0S Press,
2004.

Adnan Darwiche. SDD: A new canonical representation of propositional knowledge bases.
In Toby Walsh, editor, Proceedings of the 22nd International Joint Conference on Artificial
Intelligence (IJCAI 2011), Barcelona, Catalonia, Spain, July 16-22, 2011, pages 819-826.
AAAT Press/IJCAI, 2011. doi:10.5591/978-1-57735-516-8/IJCAI11-143.

Holger Dell, Christian Komusiewicz, Nimrod Talmon, and Mathias Weller. The PACE 2017
parameterized algorithms and computational experiments challenge: The second iteration.
In Daniel Lokshtanov and Naomi Nishimura, editors, Proceedings of the 12th International
Symposium on Parameterized and Ezact Computation (IPEC 2017), September 6-8, 2017,
Vienna, Austria, volume 89 of LIPIcs, pages 30:1-30:12. Dagstuhl Publishing, 2017. doi:
10.4230/LIPIcs.IPEC.2017.30.

Carmel Domshlak and Jorg Hoffmann. Probabilistic planning via heuristic forward search
and weighted model counting. Journal of Artificial Intelligence Research, 30:565—620, 2007.
doi:10.1613/jair.2289.

Jeffrey M. Dudek, Vu Phan, and Moshe Y. Vardi. ADDMC: weighted model counting
with algebraic decision diagrams. In Proceedings of the 84th AAAI Conference on Artificial
Intelligence (AAAI 2020), New York, NY, USA, February 7-12, 2020, pages 1468-1476. AAAI
Press, 2020. URL: https://aaai.org/ojs/index.php/AAAI/article/view/5505.

Jeffrey M. Dudek, Vu H. N. Phan, and Moshe Y. Vardi. DPMC: weighted model counting by
dynamic programming on project-join trees. In Helmut Simonis, editor, Proceedings of the
26th International Conference on Principles and Practice of Constraint Programming (CP
2020), Louvain-la-Neuve, Belgium, September 7-11, 2020, volume 12333 of Lecture Notes in
Computer Science, pages 211-230. Springer, 2020. doi:10.1007/978-3-030-58475-7_13.
Jeffrey M. Dudek and Moshe Y. Vardi. Parallel weighted model counting with tensor networks.
CoRR, abs/2006.15512, 2020. arXiv:2006.15512.

Leonardo Dueiias-Osorio, Kuldeep S. Meel, Roger Paredes, and Moshe Y. Vardi. Counting-
based reliability estimation for power-transmission grids. In Satinder P. Singh and Shaul
Markovitch, editors, Proceedings of the 31st AAAI Conference on Artificial Intelligence (AAAI
2017), February 4-9, 2017, San Francisco, California, USA, pages 4488-4494. AAAT Press,
2017. URL: http://aaai.org/ocs/index.php/AAAT/AAAT17 /paper/view/14870.

Naila Farooqui, Andrew Kerr, Gregory Frederick Diamos, Sudhakar Yalamanchili, and Karsten
Schwan. A framework for dynamically instrumenting GPU compute applications within
GPU ocelot. In Proceedings of the 4th Workshop on General Purpose Processing on Graphics
Processing Units (GPGPU 2011), Newport Beach, CA, USA, March 5, 2011, page 9. ACM,
2011. doi:10.1145/1964179.1964192.

Massimiliano Fatica. Accelerating linpack with CUDA on heterogenous clusters. In David R.
Kaeli and Miriam Leeser, editors, Proceedings of the 2nd Workshop on General Purpose
Processing on Graphics Processing Units (GPGPU 2009), Washington, DC, USA, March 8,
2009, volume 383 of ACM International Conference Proceeding Series, pages 46-51. ACM,
2009. doi:10.1145/1513895.1513901.

Johannes K. Fichte and Markus Hecher. The model counting competition 2021. https:
//mccompetition.org/past_iterations, 2021.

24:17

CP 2021


http://ijcai.org/Abstract/15/405
https://doi.org/10.1016/B978-0-12-415933-4.02001-9
https://doi.org/10.1016/B978-0-12-415933-4.02001-9
https://doi.org/10.5591/978-1-57735-516-8/IJCAI11-143
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.4230/LIPIcs.IPEC.2017.30
https://doi.org/10.1613/jair.2289
https://aaai.org/ojs/index.php/AAAI/article/view/5505
https://doi.org/10.1007/978-3-030-58475-7_13
http://arxiv.org/abs/2006.15512
http://aaai.org/ocs/index.php/AAAI/AAAI17/paper/view/14870
https://doi.org/10.1145/1964179.1964192
https://doi.org/10.1145/1513895.1513901
https://mccompetition.org/past_iterations
https://mccompetition.org/past_iterations

24:18

Parallel Model Counting with CUDA

22

23

24

25

26

27

28

29

30

31

32

33

34

35

Johannes K. Fichte, Markus Hecher, and Florim Hamiti. The model counting competition
2020. ACM Journal of Experimental Algorithmics, 2021. In press.

Johannes K. Fichte, Markus Hecher, and Arne Meier. Counting complexity for reasoning in
abstract argumentation. In Proceedings of the 33rd AAAI Conference on Artificial Intelligence
(AAA’19), Honolulu, Hawaii, USA, 2018.

Johannes K. Fichte, Markus Hecher, and Arne Meier. Knowledge-base degrees of inconsistency:
Complexity and counting. In Proceedings of the AAAI Conference on Artificial Intelligence
(AAATI’21), pages 6349-6357, 2021.

Johannes K. Fichte, Markus Hecher, and Andreas Pfandler. Lower Bounds for QBFs of
Bounded Treewidth. In Naoki Kobayashi, editor, Proceedings of the 35th Annual ACM/IEEE
Symposium on Logic in Computer Science (LICS’20), pages 410-424. Assoc. Comput. Mach.,
New York, 2020.

Johannes K. Fichte, Markus Hecher, and Valentin Roland. GPUSAT3 benchmark data and
source code. Zenodo, 2021. doi:10.5281/zenodo.5159903.

Johannes K. Fichte, Markus Hecher, Patrick Thier, and Stefan Woltran. Exploiting database
management systems and treewidth for counting. In Ekaterina Komendantskaya and Y. An-
nie Liu, editors, Proceedings of the 22nd International Symposium on Practical Aspects of
Declarative Languages (PADL’20), volume 12007 of Lecture Notes in Computer Science, pages
151-167. Springer, 2020. doi:10.1007/978-3-030-39197-3_10.

Johannes K. Fichte, Markus Hecher, Stefan Woltran, and Markus Zisser. Weighted model
counting on the GPU by exploiting small treewidth. In Yossi Azar, Hannah Bast, and Grzegorz
Herman, editors, Proceedings of the 26th Annual European Symposium on Algorithms (ESA
2018), August 20-22, 2018, Helsinki, Finland, volume 112 of LIPIcs, pages 28:1-28:16. Dagstuhl
Publishing, 2018. doi:10.4230/LIPIcs.ESA.2018.28.

Johannes K. Fichte, Markus Hecher, and Markus Zisser. An improved GPU-based SAT model
counter. In Thomas Schiex and Simon de Givry, editors, Proceedings of the 25th International
Conference on Principles and Practice of Constraint Programming (CP 2019), Stamford, CT,
USA, September 30 - October 4, 2019, volume 11802 of Lecture Notes in Computer Science,
pages 491-509. Springer, 2019. doi:10.1007/978-3-030-30048-7_29.

Robert D. Finn, Jody Clements, and Sean R. Eddy. HMMER web server: interactive
sequence similarity searching. Nucleic Acids Research, 39(Web-Server-Issue):29-37, 2011.
doi:10.1093/nar/gkr367.

Rong Ge, Ryan Vogt, Jahangir Majumder, Arif Alam, Martin Burtscher, and Ziliang Zong.
Effects of dynamic voltage and frequency scaling on a K20 GPU. In Proceedings of the 42nd
International Conference on Parallel Processing (ICPP 2013), Lyon, France, October 1-4,
20183, pages 826-833. IEEE Computer Society, 2013. doi:10.1109/ICPP.2013.98.

GNU Project. GNU libc manual, 3.5.2 locked memory details. URL: https://www.gnu.org/
software/libc/manual/html_node/Locked-Memory-Details.html.

Markus Hecher. Treewidth-aware reductions of normal ASP to SAT - is normal ASP harder
than SAT after all? In Diego Calvanese, Esra Erdem, and Michael Thielscher, editors,
Proceedings of the 17th International Conference on Principles of Knowledge Representation
and Reasoning, KR 2020, Rhodes, Greece, September 12-18, 2020, pages 485-495, 2020.
doi:10.24963/kr.2020/49.

Markus Hecher, Patrick Thier, and Stefan Woltran. Taming high treewidth with abstraction,
nested dynamic programming, and database technology. In Luca Pulina and Martina Seidl,
editors, Proceedings of the 23rd International Conference on Theory and Applications of
Satisfiability Testing (SAT 2020), Alghero, Italy, July 3-10, 2020, volume 12178 of Lecture Notes
in Computer Science, pages 343—-360. Springer, 2020. doi:10.1007/978-3-030-51825-7_25.
Marijn Heule and Hans van Maaren. Parallel SAT solving using bit-level operations. Journal
on Satisfiability, Boolean Modeling and Computation, 4(2-4):99-116, 2008. doi:10.3233/
sat190040.


https://doi.org/10.5281/zenodo.5159903
https://doi.org/10.1007/978-3-030-39197-3_10
https://doi.org/10.4230/LIPIcs.ESA.2018.28
https://doi.org/10.1007/978-3-030-30048-7_29
https://doi.org/10.1093/nar/gkr367
https://doi.org/10.1109/ICPP.2013.98
https://www.gnu.org/software/libc/manual/html_node/Locked-Memory-Details.html
https://www.gnu.org/software/libc/manual/html_node/Locked-Memory-Details.html
https://doi.org/10.24963/kr.2020/49
https://doi.org/10.1007/978-3-030-51825-7_25
https://doi.org/10.3233/sat190040
https://doi.org/10.3233/sat190040

J. K. Fichte, M. Hecher, and V. Roland

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Jared Hoberock, Nathan Bell, and Thrust Contributors. Thrust API documentation. URL:
https://thrust.github.io/doc/classthrust_1_1imr_1_idisjoint__unsynchronized__
pool__resource.html.

Lukasz Jarzabek and Pawel Czarnul. Performance evaluation of unified memory and dynamic
parallelism for selected parallel CUDA applications. Journal of Supercomputing, 73(12):5378—
5401, 2017. doi:10.1007/s11227-017-2091-x.

Jean-Marie Lagniez, Emmanuel Lonca, and Pierre Marquis. Improving model counting by
leveraging definability. In Subbarao Kambhampati, editor, Proceedings of the 25th International
Joint Conference on Artificial Intelligence (IJCAI 2016), New York, NY, USA, 9-15 July 2016,
pages 751-757. The AAAI Press, July 2016. URL: http://wuw.ijcai.org/Abstract/16/112.
Jean-Marie Lagniez and Pierre Marquis. An improved decision-DDNF compiler. In Carles
Sierra, editor, Proceedings of the 26th International Joint Conference on Artificial Intelligence
(IJCAI 2017), Melbourne, Australia, August 19-25, 2017, pages 667-673. The AAAI Press,
2017. doi:10.24963/ijcai.2017/93.

Jean-Marie Lagniez, Pierre Marquis, and Nicolas Szczepanski. DMC: a distributed model
counter. In Jérome Lang, editor, Proceedings of the 27th International Joint Conference on
Artificial Intelligence (IJCAI 2018), July 13-19, 2018, Stockholm, Sweden, pages 1331-1338.
The AAAT Press, 2018. doi:10.24963/ijcai.2018/185.

Silviu Maniu, Pierre Senellart, and Suraj Jog. An experimental study of the treewidth
of real-world graph data. In Pablo Barcelé6 and Marco Calautti, editors, Proceedings of
the 22nd International Conference on Database Theory (ICDT 2019), March 26-28, 2019,
Lisbon, Portugal, volume 127 of LIPIcs, pages 12:1-12:18. Dagstuhl Publishing, 2019. doi:
10.4230/LIPIcs.ICDT.2019.12.

Sheila A. Muise, Christian J .and Mcllraith, J. Christopher Beck, and Eric I. Hsu. Dsharp: Fast
d-DNNF compilation with sharpSAT. In Leila Kosseim and Diana Inkpen, editors, Proceedings
of the 25th Canadian Conference on Advances in Artificial Intelligence Artificial Intelligence
(Canadian AI 2012), Toronto, ON, Canada, May 28-30, 2012, volume 7310 of Lecture Notes
in Computer Science, pages 356-361. Springer, 2012. doi:10.1007/978-3-642-30353-1_36.
NVIDIA Corporation. Application note — CUDA 2.2 pinned memory APIs. URL:
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/simpleZero
Copy/doc/CUDA2.2PinnedMemoryAPIs.pdf.

Umut Oztok and Adnan Darwiche. A top-down compiler for sentential decision diagrams. In
Qiang Yang and Michael J. Wooldridge, editors, Proceedings of the 24th International Joint
Conference on Artificial Intelligence (IJCAI 2015), Buenos Aires, Argentina, July 25-31, 2015,
pages 3141-3148. The AAAI Press, 2015. URL: http://ijcai.org/Abstract/15/443.
Saddam Quirem, Fahian Ahmed, and Byeong Kil Lee. CUDA acceleration of P7Viterbi
algorithm in HMMER 3.0. In Sheng Zhong, Dejing Dou, and Yu Wang, editors, Proceedings
of the 30th IEEE International Performance Computing and Communications Conference
(IPCCC 2011), Orlando, Florida, USA, November 17-19, 2011, pages 1-2. IEEE, 2011.
doi:10.1109/PCCC.2011.6108104.

Dan Roth. On the hardness of approximate reasoning. Artificial Intelligence, 82(1-2):273-302,
1996. doi:10.1016/0004-3702(94)00092-1.

Marko Samer and Stefan Szeider. Algorithms for propositional model counting. Journal of
Discrete Algorithms, 8(1):50-64, 2010. doi:10.1016/j.jda.2009.06.002.

Tian Sang, Paul Beame, and Henry A. Kautz. Performing bayesian inference by weighted
model counting. In Manuela M. Veloso and Subbarao Kambhampati, editors, Proceedings of the
20th National Conference on Artificial Intelligence and the Seventeenth Innovative Applications
of Artificial Intelligence Conference, July 9-13, 2005, Pittsburgh, Pennsylvania, USA, pages
475-482. AAAI Press / The MIT Press, 2005. URL: http://www.aaai.org/Library/AAAT/
2005/aaai05-075. php.

Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel. GANAK: A scalable
probabilistic exact model counter. In Sarit Kraus, editor, Proceedings of the 28th International
Joint Conference on Artificial Intelligence (IJCAI 2019), Macao, China, August 10-16, 2019,
pages 1169-1176, 2019. doi:10.24963/ijcai.2019/163.

24:19

CP 2021


https://thrust.github.io/doc/classthrust_1_1mr_1_1disjoint__unsynchronized__pool__resource.html
https://thrust.github.io/doc/classthrust_1_1mr_1_1disjoint__unsynchronized__pool__resource.html
https://doi.org/10.1007/s11227-017-2091-x
http://www.ijcai.org/Abstract/16/112
https://doi.org/10.24963/ijcai.2017/93
https://doi.org/10.24963/ijcai.2018/185
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.4230/LIPIcs.ICDT.2019.12
https://doi.org/10.1007/978-3-642-30353-1_36
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/simpleZeroCopy/doc/CUDA2.2PinnedMemoryAPIs.pdf
http://developer.download.nvidia.com/compute/DevZone/C/html/C/src/simpleZeroCopy/doc/CUDA2.2PinnedMemoryAPIs.pdf
http://ijcai.org/Abstract/15/443
https://doi.org/10.1109/PCCC.2011.6108104
https://doi.org/10.1016/0004-3702(94)00092-1
https://doi.org/10.1016/j.jda.2009.06.002
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
http://www.aaai.org/Library/AAAI/2005/aaai05-075.php
https://doi.org/10.24963/ijcai.2019/163

24:20 Parallel Model Counting with CUDA

50 Ben Strasser. Computing tree decompositions with flowcutter: PACE 2017 submission. CoRR,
abs/1709.08949, 2017. arXiv:1709.08949.

51 Marc Thurley. sharpSAT - counting models with advanced component caching and implicit
BCP. In Armin Biere and Carla P. Gomes, editors, Proceedings of the 9th International
Conference on Theory and Applications of Satisfiability Testing (SAT 2006), Seattle, WA,
USA, August 12-15, 2006, volume 4121 of Lecture Notes in Computer Science, pages 424—429.
Springer, 2006. doi:10.1007/11814948_38.

52  Richard Vuduc and Jee Choi. A Brief History and Introduction to GPGPU, pages 9-23.
Springer US, Boston, MA, 2013. doi:10.1007/978-1-4614-8745-6_2.


http://arxiv.org/abs/1709.08949
https://doi.org/10.1007/11814948_38
https://doi.org/10.1007/978-1-4614-8745-6_2

	1 Introduction
	2 Preliminaries
	3 Algorithm Engineering and Hardware Utilization
	4 The Influence of Decomposition Libraries
	5 Overall Results
	6 Conclusion and Future Work

