32 research outputs found

    Improving Local Search for Minimum Weighted Connected Dominating Set Problem by Inner-Layer Local Search

    Get PDF
    The minimum weighted connected dominating set (MWCDS) problem is an important variant of connected dominating set problems with wide applications, especially in heterogenous networks and gene regulatory networks. In the paper, we develop a nested local search algorithm called NestedLS for solving MWCDS on classic benchmarks and massive graphs. In this local search framework, we propose two novel ideas to make it effective by utilizing previous search information. First, we design the restart based smoothing mechanism as a diversification method to escape from local optimal. Second, we propose a novel inner-layer local search method to enlarge the candidate removal set, which can be modelled as an optimized version of spanning tree problem. Moreover, inner-layer local search method is a general method for maintaining the connectivity constraint when dealing with massive graphs. Experimental results show that NestedLS outperforms state-of-the-art meta-heuristic algorithms on most instances

    Energy-Aware Constrained Relay Node Deployment for Sustainable Wireless Sensor Networks

    Get PDF
    © 2016 IEEE. This paper considers the problem of communication coverage for sustainable data forwarding in wireless sensor networks, where an energy-aware deployment model of relay nodes (RNs) is proposed. The model used in this paper considers constrained placement and is different from the existing one-tiered and two-tiered models. It supposes two different types of sensor nodes to be deployed, i) energy rich nodes (ERNs), and ii) energy limited nodes (ELNs). The aim is thus to use only the ERNs for relaying packets, while ELN's use will be limited to sensing and transmitting their own readings. A minimum number of RNs is added if necessary to help ELNs. This intuitively ensures sustainable coverage and prolongs the network lifetime. The problem is reduced to the traditional problem of minimum weighted connected dominating set (MWCDS) in a vertex weighted graph. It is then solved by taking advantage of the simple form of the weight function, both when deriving exact and approximate solutions. Optimal solution is derived using integer linear programming (ILP), and a heuristic is given for the approximate solution. Upper bounds for the approximation of the heuristic (versus the optimal solution) and for its runtime are formally derived. The proposed model and solutions are also evaluated by simulation. The proposed model is compared with the one-tiered and two-tiered models when using similar solution to determine RNs positions, i.e., minimum connected dominating set (MCDS) calculation. Results demonstrate the proposed model considerably improves the network life time compared to the one-tiered model, and this by adding a lower number of RNs compared to the two-tiered model. Further, both the heuristic and the ILP for the MWCDS are evaluated and compared with a state-of-the-art algorithm. The results show the proposed heuristic has runtime close to the ILP while clearly reducing the runtime compared to both ILP and existing heuristics. The results also demonstrate scalability of the proposed solution

    Approximation algorithms for connected dominating sets

    Full text link

    Design of a Covert RFID Tag Network for Target Discovery and Target Information Routing

    Get PDF
    Radio frequency identification (RFID) tags are small electronic devices working in the radio frequency range. They use wireless radio communications to automatically identify objects or people without the need for line-of-sight or contact, and are widely used in inventory tracking, object location, environmental monitoring. This paper presents a design of a covert RFID tag network for target discovery and target information routing. In the design, a static or very slowly moving target in the field of RFID tags transmits a distinct pseudo-noise signal, and the RFID tags in the network collect the target information and route it to the command center. A map of each RFID tag’s location is saved at command center, which can determine where a RFID tag is located based on each RFID tag’s ID. We propose the target information collection method with target association and clustering, and we also propose the information routing algorithm within the RFID tag network. The design and operation of the proposed algorithms are illustrated through examples. Simulation results demonstrate the effectiveness of the design
    corecore