26,652 research outputs found

    Predicting the outcome of renal transplantation

    Get PDF
    ObjectiveRenal transplantation has dramatically improved the survival rate of hemodialysis patients. However, with a growing proportion of marginal organs and improved immunosuppression, it is necessary to verify that the established allocation system, mostly based on human leukocyte antigen matching, still meets today's needs. The authors turn to machine-learning techniques to predict, from donor-recipient data, the estimated glomerular filtration rate (eGFR) of the recipient 1 year after transplantation.DesignThe patient's eGFR was predicted using donor-recipient characteristics available at the time of transplantation. Donors' data were obtained from Eurotransplant's database, while recipients' details were retrieved from Charite Campus Virchow-Klinikum's database. A total of 707 renal transplantations from cadaveric donors were included.MeasurementsTwo separate datasets were created, taking features with <10% missing values for one and <50% missing values for the other. Four established regressors were run on both datasets, with and without feature selection.ResultsThe authors obtained a Pearson correlation coefficient between predicted and real eGFR (COR) of 0.48. The best model for the dataset was a Gaussian support vector machine with recursive feature elimination on the more inclusive dataset. All results are available at http://transplant.molgen.mpg.de/.LimitationsFor now, missing values in the data must be predicted and filled in. The performance is not as high as hoped, but the dataset seems to be the main cause.ConclusionsPredicting the outcome is possible with the dataset at hand (COR=0.48). Valuable features include age and creatinine levels of the donor, as well as sex and weight of the recipient

    Modeling Emotion Influence from Images in Social Networks

    Full text link
    Images become an important and prevalent way to express users' activities, opinions and emotions. In a social network, individual emotions may be influenced by others, in particular by close friends. We focus on understanding how users embed emotions into the images they uploaded to the social websites and how social influence plays a role in changing users' emotions. We first verify the existence of emotion influence in the image networks, and then propose a probabilistic factor graph based emotion influence model to answer the questions of "who influences whom". Employing a real network from Flickr as experimental data, we study the effectiveness of factors in the proposed model with in-depth data analysis. Our experiments also show that our model, by incorporating the emotion influence, can significantly improve the accuracy (+5%) for predicting emotions from images. Finally, a case study is used as the anecdotal evidence to further demonstrate the effectiveness of the proposed model

    Measuring academic influence: Not all citations are equal

    Get PDF
    The importance of a research article is routinely measured by counting how many times it has been cited. However, treating all citations with equal weight ignores the wide variety of functions that citations perform. We want to automatically identify the subset of references in a bibliography that have a central academic influence on the citing paper. For this purpose, we examine the effectiveness of a variety of features for determining the academic influence of a citation. By asking authors to identify the key references in their own work, we created a data set in which citations were labeled according to their academic influence. Using automatic feature selection with supervised machine learning, we found a model for predicting academic influence that achieves good performance on this data set using only four features. The best features, among those we evaluated, were those based on the number of times a reference is mentioned in the body of a citing paper. The performance of these features inspired us to design an influence-primed h-index (the hip-index). Unlike the conventional h-index, it weights citations by how many times a reference is mentioned. According to our experiments, the hip-index is a better indicator of researcher performance than the conventional h-index

    Modified Frank-Wolfe Algorithm for Enhanced Sparsity in Support Vector Machine Classifiers

    Full text link
    This work proposes a new algorithm for training a re-weighted L2 Support Vector Machine (SVM), inspired on the re-weighted Lasso algorithm of Cand\`es et al. and on the equivalence between Lasso and SVM shown recently by Jaggi. In particular, the margin required for each training vector is set independently, defining a new weighted SVM model. These weights are selected to be binary, and they are automatically adapted during the training of the model, resulting in a variation of the Frank-Wolfe optimization algorithm with essentially the same computational complexity as the original algorithm. As shown experimentally, this algorithm is computationally cheaper to apply since it requires less iterations to converge, and it produces models with a sparser representation in terms of support vectors and which are more stable with respect to the selection of the regularization hyper-parameter
    corecore