4,571 research outputs found

    Universal Mobile Service Execution Framework for Device-To-Device Collaborations

    Get PDF
    There are high demands of effective and high-performance of collaborations between mobile devices in the places where traditional Internet connections are unavailable, unreliable, or significantly overburdened, such as on a battlefield, disaster zones, isolated rural areas, or crowded public venues. To enable collaboration among the devices in opportunistic networks, code offloading and Remote Method Invocation are the two major mechanisms to ensure code portions of applications are successfully transmitted to and executed on the remote platforms. Although these domains are highly enjoyed in research for a decade, the limitations of multi-device connectivity, system error handling or cross platform compatibility prohibit these technologies from being broadly applied in the mobile industry. To address the above problems, we designed and developed UMSEF - an Universal Mobile Service Execution Framework, which is an innovative and radical approach for mobile computing in opportunistic networks. Our solution is built as a component-based mobile middleware architecture that is flexible and adaptive with multiple network topologies, tolerant for network errors and compatible for multiple platforms. We provided an effective algorithm to estimate the resource availability of a device for higher performance and energy consumption and a novel platform for mobile remote method invocation based on declarative annotations over multi-group device networks. The experiments in reality exposes our approach not only achieve the better performance and energy consumption, but can be extended to large-scaled ubiquitous or IoT systems

    Hyp3rArmor: reducing web application exposure to automated attacks

    Full text link
    Web applications (webapps) are subjected constantly to automated, opportunistic attacks from autonomous robots (bots) engaged in reconnaissance to discover victims that may be vulnerable to specific exploits. This is a typical behavior found in botnet recruitment, worm propagation, largescale fingerprinting and vulnerability scanners. Most anti-bot techniques are deployed at the application layer, thus leaving the network stack of the webapp’s server exposed. In this paper we present a mechanism called Hyp3rArmor, that addresses this vulnerability by minimizing the webapp’s attack surface exposed to automated opportunistic attackers, for JavaScriptenabled web browser clients. Our solution uses port knocking to eliminate the webapp’s visible network footprint. Clients of the webapp are directed to a visible static web server to obtain JavaScript that authenticates the client to the webapp server (using port knocking) before making any requests to the webapp. Our implementation of Hyp3rArmor, which is compatible with all webapp architectures, has been deployed and used to defend single and multi-page websites on the Internet for 114 days. During this time period the static web server observed 964 attempted attacks that were deflected from the webapp, which was only accessed by authenticated clients. Our evaluation shows that in most cases client-side overheads were negligible and that server-side overheads were minimal. Hyp3rArmor is ideal for critical systems and legacy applications that must be accessible on the Internet. Additionally Hyp3rArmor is composable with other security tools, adding an additional layer to a defense in depth approach.This work has been supported by the National Science Foundation (NSF) awards #1430145, #1414119, and #1012798

    Are HIV smartphone apps and online interventions fit for purpose?

    Get PDF
    Sexual health is an under-explored area of Human-Computer Interaction (HCI), particularly sexually transmitted infections such as HIV. Due to the stigma associated with these infections, people are often motivated to seek information online. With the rise of smartphone and web apps, there is enormous potential for technology to provide easily accessible information and resources. However, using online information raises important concerns about the trustworthiness of these resources and whether they are fit for purpose. We conducted a review of smartphone and web apps to investigate the landscape of currently available online apps and whether they meet the diverse needs of people seeking information on HIV online. Our functionality review revealed that existing technology interventions have a one-size-fits-all approach and do not support the breadth and complexity of HIV-related support needs. We argue that technology-based interventions need to signpost their offering and provide tailored support for different stages of HIV, including prevention, testing, diagnosis and management

    SoK: Distributed Computing in ICN

    Full text link
    Information-Centric Networking (ICN), with its data-oriented operation and generally more powerful forwarding layer, provides an attractive platform for distributed computing. This paper provides a systematic overview and categorization of different distributed computing approaches in ICN encompassing fundamental design principles, frameworks and orchestration, protocols, enablers, and applications. We discuss current pain points in legacy distributed computing, attractive ICN features, and how different systems use them. This paper also provides a discussion of potential future work for distributed computing in ICN.Comment: 10 pages, 3 figures, 1 table. Accepted by ACM ICN 202

    A Policy Analysis of Cybersecurity and Mobile Applications: Implications on the Media Space

    Get PDF
    This study presents discussion for several examples that illustrates the importance of having a security policy for mobile phones. The study further examines the importance of developing a national security policy created for mobile devices in order to protect sensitive, and personal data to safeguard the media space. By inspection, it was observed from the literature that smartphones are becoming a vehicle to provide an efficient and convenient way to access, find and share information; however, the availability of this information has caused an increase in cyber attacks. Currently, cyber threats range from Trojans and viruses to botnets and toolkits. Presently, 96% of smartphones do not have pre-installed security software. This lack in security is an opportunity for malicious cyber attackers to hack into the various devices that are popular (i.e. Android, iPhone and Blackberry). Traditional security software found in personal computers (PCs), such as firewalls, antivirus, and encryption, is not currently available in smartphones. Moreover, smartphones are even more vulnerable than personal computers because more people are using smartphones to do personal tasks. Nowadays, smartphone users can email, use social networking applications (Facebook and Twitter), buy and download various applications and shop. Furthermore, users can now conduct monetary transactions, such as buying goods, redeeming coupons and tickets, banking and processing point-of-sale payments. Monetary transactions are especially attractive to cyber attackers because they can gain access to bank account information after hacking a user’s smartphone. Lastly, smartphones are small and are easy to carry anywhere. Unfortunately, the convenience of using smartphones to do personal task is the loophole cyber attackers need to gain access to personal data. Keywords: Smartphones, Social Media, Cybersecurity, Computers, E-commerce, Operating Systems, Internets, Browsers DOI: 10.7176/ISDE/13-1-04 Publication date:March 31st 202

    Efficient service discovery in wide area networks

    Get PDF
    Living in an increasingly networked world, with an abundant number of services available to consumers, the consumer electronics market is enjoying a boom. The average consumer in the developed world may own several networked devices such as games consoles, mobile phones, PDAs, laptops and desktops, wireless picture frames and printers to name but a few. With this growing number of networked devices comes a growing demand for services, defined here as functions requested by a client and provided by a networked node. For example, a client may wish to download and share music or pictures, find and use printer services, or lookup information (e.g. train times, cinema bookings). It is notable that a significant proportion of networked devices are now mobile. Mobile devices introduce a new dynamic to the service discovery problem, such as lower battery and processing power and more expensive bandwidth. Device owners expect to access services not only in their immediate proximity, but further afield (e.g. in their homes and offices). Solving these problems is the focus of this research. This Thesis offers two alternative approaches to service discovery in Wide Area Networks (WANs). Firstly, a unique combination of the Session Initiation Protocol (SIP) and the OSGi middleware technology is presented to provide both mobility and service discovery capability in WANs. Through experimentation, this technique is shown to be successful where the number of operating domains is small, but it does not scale well. To address the issue of scalability, this Thesis proposes the use of Peer-to-Peer (P2P) service overlays as a medium for service discovery in WANs. To confirm that P2P overlays can in fact support service discovery, a technique to utilise the Distributed Hash Table (DHT) functionality of distributed systems is used to store and retrieve service advertisements. Through simulation, this is shown to be both a scalable and a flexible service discovery technique. However, the problems associated with P2P networks with respect to efficiency are well documented. In a novel approach to reduce messaging costs in P2P networks, multi-destination multicast is used. Two well known P2P overlays are extended using the Explicit Multi-Unicast (XCAST) protocol. The resulting analysis of this extension provides a strong argument for multiple P2P maintenance algorithms co-existing in a single P2P overlay to provide adaptable performance. A novel multi-tier P2P overlay system is presented, which is tailored for service rich mobile devices and which provides an efficient platform for service discovery
    corecore