6,441 research outputs found

    The Dynamics of Viral Marketing

    Full text link
    We present an analysis of a person-to-person recommendation network, consisting of 4 million people who made 16 million recommendations on half a million products. We observe the propagation of recommendations and the cascade sizes, which we explain by a simple stochastic model. We analyze how user behavior varies within user communities defined by a recommendation network. Product purchases follow a 'long tail' where a significant share of purchases belongs to rarely sold items. We establish how the recommendation network grows over time and how effective it is from the viewpoint of the sender and receiver of the recommendations. While on average recommendations are not very effective at inducing purchases and do not spread very far, we present a model that successfully identifies communities, product and pricing categories for which viral marketing seems to be very effective

    Who are Like-minded: Mining User Interest Similarity in Online Social Networks

    Full text link
    In this paper, we mine and learn to predict how similar a pair of users' interests towards videos are, based on demographic (age, gender and location) and social (friendship, interaction and group membership) information of these users. We use the video access patterns of active users as ground truth (a form of benchmark). We adopt tag-based user profiling to establish this ground truth, and justify why it is used instead of video-based methods, or many latent topic models such as LDA and Collaborative Filtering approaches. We then show the effectiveness of the different demographic and social features, and their combinations and derivatives, in predicting user interest similarity, based on different machine-learning methods for combining multiple features. We propose a hybrid tree-encoded linear model for combining the features, and show that it out-performs other linear and treebased models. Our methods can be used to predict user interest similarity when the ground-truth is not available, e.g. for new users, or inactive users whose interests may have changed from old access data, and is useful for video recommendation. Our study is based on a rich dataset from Tencent, a popular service provider of social networks, video services, and various other services in China

    CAM2: Conformity-Aware Multi-Task Ranking Model for Large-Scale Recommender Systems

    Full text link
    Learning large-scale industrial recommender system models by fitting them to historical user interaction data makes them vulnerable to conformity bias. This may be due to a number of factors, including the fact that user interests may be difficult to determine and that many items are often interacted with based on ecosystem factors other than their relevance to the individual user. In this work, we introduce CAM2, a conformity-aware multi-task ranking model to serve relevant items to users on one of the largest industrial recommendation platforms. CAM2 addresses these challenges systematically by leveraging causal modeling to disentangle users' conformity to popular items from their true interests. This framework is generalizable and can be scaled to support multiple representations of conformity and user relevance in any large-scale recommender system. We provide deeper practical insights and demonstrate the effectiveness of the proposed model through improvements in offline evaluation metrics compared to our production multi-task ranking model. We also show through online experiments that the CAM2 model results in a significant 0.50% increase in aggregated user engagement, coupled with a 0.21% increase in daily active users on Facebook Watch, a popular video discovery and sharing platform serving billions of users.Comment: Accepted by WWW 202

    Image-based Recommendations on Styles and Substitutes

    Full text link
    Humans inevitably develop a sense of the relationships between objects, some of which are based on their appearance. Some pairs of objects might be seen as being alternatives to each other (such as two pairs of jeans), while others may be seen as being complementary (such as a pair of jeans and a matching shirt). This information guides many of the choices that people make, from buying clothes to their interactions with each other. We seek here to model this human sense of the relationships between objects based on their appearance. Our approach is not based on fine-grained modeling of user annotations but rather on capturing the largest dataset possible and developing a scalable method for uncovering human notions of the visual relationships within. We cast this as a network inference problem defined on graphs of related images, and provide a large-scale dataset for the training and evaluation of the same. The system we develop is capable of recommending which clothes and accessories will go well together (and which will not), amongst a host of other applications.Comment: 11 pages, 10 figures, SIGIR 201
    corecore