16,885 research outputs found

    The Research on ETL of Web Data Source from Postal Enterprise IS

    Get PDF
    In this paper, based on an actual problem in a process of data warehouse project which an enterprise implemented, we make a study on the ETL framework of Web data source from Enterprise IS which is B/S structural, and hence presented a new extraction and loading method for the situation without directly database connection. Furthermore, we developed a new ETL framework with the ability of processing Web page as data source in B/S structural enterprise IS. With the extension of XML configuration file, the framework can be adjusted freely along with business change

    A unified view of data-intensive flows in business intelligence systems : a survey

    Get PDF
    Data-intensive flows are central processes in today’s business intelligence (BI) systems, deploying different technologies to deliver data, from a multitude of data sources, in user-preferred and analysis-ready formats. To meet complex requirements of next generation BI systems, we often need an effective combination of the traditionally batched extract-transform-load (ETL) processes that populate a data warehouse (DW) from integrated data sources, and more real-time and operational data flows that integrate source data at runtime. Both academia and industry thus must have a clear understanding of the foundations of data-intensive flows and the challenges of moving towards next generation BI environments. In this paper we present a survey of today’s research on data-intensive flows and the related fundamental fields of database theory. The study is based on a proposed set of dimensions describing the important challenges of data-intensive flows in the next generation BI setting. As a result of this survey, we envision an architecture of a system for managing the lifecycle of data-intensive flows. The results further provide a comprehensive understanding of data-intensive flows, recognizing challenges that still are to be addressed, and how the current solutions can be applied for addressing these challenges.Peer ReviewedPostprint (author's final draft

    On-Demand Big Data Integration: A Hybrid ETL Approach for Reproducible Scientific Research

    Full text link
    Scientific research requires access, analysis, and sharing of data that is distributed across various heterogeneous data sources at the scale of the Internet. An eager ETL process constructs an integrated data repository as its first step, integrating and loading data in its entirety from the data sources. The bootstrapping of this process is not efficient for scientific research that requires access to data from very large and typically numerous distributed data sources. a lazy ETL process loads only the metadata, but still eagerly. Lazy ETL is faster in bootstrapping. However, queries on the integrated data repository of eager ETL perform faster, due to the availability of the entire data beforehand. In this paper, we propose a novel ETL approach for scientific data integration, as a hybrid of eager and lazy ETL approaches, and applied both to data as well as metadata. This way, Hybrid ETL supports incremental integration and loading of metadata and data from the data sources. We incorporate a human-in-the-loop approach, to enhance the hybrid ETL, with selective data integration driven by the user queries and sharing of integrated data between users. We implement our hybrid ETL approach in a prototype platform, Obidos, and evaluate it in the context of data sharing for medical research. Obidos outperforms both the eager ETL and lazy ETL approaches, for scientific research data integration and sharing, through its selective loading of data and metadata, while storing the integrated data in a scalable integrated data repository.Comment: Pre-print Submitted to the DMAH Special Issue of the Springer DAPD Journa

    High-level ETL for semantic data warehouses

    Get PDF
    The popularity of the Semantic Web (SW) encourages organizations to organize and publish semantic data using the RDF model. This growth poses new requirements to Business Intelligence (BI) technologies to enable On-Line Analytical Processing (OLAP)-like analysis over semantic data. The incorporation of semantic data into a Data Warehouse (DW) is not supported by the traditional Extract-Transform-Load (ETL) tools because they do not consider semantic issues in the integration process. In this paper, we propose a layer-based integration process and a set of high-level RDF-based ETL constructs required to define, map, extract, process, transform, integrate, update, and load (multidimensional) semantic data. Different to other ETL tools, we automate the ETL data flows by creating metadata at the schema level. Therefore, it relieves ETL developers from the burden of manual mapping at the ETL operation level. We create a prototype, named Semantic ETL Construct (SETLCONSTRUCT), based on the innovative ETL constructs proposed here. To evaluate SETLCONSTRUCT, we create a multidimensional semantic DW by integrating a Danish Business dataset and an EU Subsidy dataset using it and compare it with the previous programmable framework SETLPROG in terms of productivity, development time and performance. The evaluation shows that 1) SETLCONSTRUCT uses 92% fewer Number of Typed Characters (NOTC) than SETLPROG, and SETLAUTO (the extension of SETLCONSTRUCT for generating ETL execution flow automatically) further reduces the Number of Used Concepts (NOUC) by another 25%; 2) using SETLCONSTRUCT, the development time is almost cut in half compared to SETLPROG, and is cut by another 27% using SETLAUTO; 3) SETLCONSTRUCT is scalable and has similar performance compared to SETLPROG.This research is partially funded by the European Commission through the Erasmus Mundus Joint Doctorate Information Technologies for Business Intelligence (EM IT4BI-DC), the Poul Due Jensen Foundation, and the Danish Council for Independent Research (DFF) under grant agreement no. DFF-8048-00051B.Peer ReviewedPostprint (author's final draft

    Requirement-driven creation and deployment of multidimensional and ETL designs

    Get PDF
    We present our tool for assisting designers in the error-prone and time-consuming tasks carried out at the early stages of a data warehousing project. Our tool semi-automatically produces multidimensional (MD) and ETL conceptual designs from a given set of business requirements (like SLAs) and data source descriptions. Subsequently, our tool translates both the MD and ETL conceptual designs produced into physical designs, so they can be further deployed on a DBMS and an ETL engine. In this paper, we describe the system architecture and present our demonstration proposal by means of an example.Peer ReviewedPostprint (author's final draft

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach

    An automated ETL for online datasets

    Get PDF
    While using online datasets for machine learning is commonplace today, the quality of these datasets impacts on the performance of prediction algorithms. One method for improving the semantics of new data sources is to map these sources to a common data model or ontology. While semantic and structural heterogeneities must still be resolved, this provides a well established approach to providing clean datasets, suitable for machine learning and analysis. However, when there is a requirement for a close to real time usage of online data, a method for dynamic Extract-Transform-Load of new sources data must be developed. In this work, we present a framework for integrating online and enterprise data sources, in close to real time, to provide datasets for machine learning and predictive algorithms. An exhaustive evaluation compares a human built data transformation process with our system’s machine generated ETL process, with very favourable results, illustrating the value and impact of an automated approach

    BigDimETL with NoSQL Database

    Get PDF
    In the last decade, we have witnessed an explosion of data volume available on the Web. This is due to the rapid technological advances with the availability of smart devices and social networks such as Twitter, Facebook, Instagram, etc. Hence, the concept of Big Data was created to face this constant increase. In this context, many domains should take in consideration this growth of data, especially, the Business Intelligence (BI) domain. Where, it is full of important knowledge that is crucial for effective decision making. However, new problems and challenges have appeared for the Decision Support System that must be addressed. Accordingly, the purpose of this paper is to adapt Extract-Transform-Load (ETL) processes with Big Data technologies, in order to support decision-making and knowledge discovery. In this paper, we propose a new approach called Big Dimensional ETL (BigDimETL) dealing with ETL development process and taking into account the Multidimensional structure. In addition, in order to accelerate data handling we used the MapReduce paradigm and Hbase as a distributed storage mechanism that provides data warehousing capabilities. Experimental results show that our ETL operation adaptation can perform well especially with Join operation
    corecore