91 research outputs found

    Multimodal Wearable Sensors for Human-Machine Interfaces

    Get PDF
    Certain areas of the body, such as the hands, eyes and organs of speech production, provide high-bandwidth information channels from the conscious mind to the outside world. The objective of this research was to develop an innovative wearable sensor device that records signals from these areas more conveniently than has previously been possible, so that they can be harnessed for communication. A novel bioelectrical and biomechanical sensing device, the wearable endogenous biosignal sensor (WEBS), was developed and tested in various communication and clinical measurement applications. One ground-breaking feature of the WEBS system is that it digitises biopotentials almost at the point of measurement. Its electrode connects directly to a high-resolution analog-to-digital converter. A second major advance is that, unlike previous active biopotential electrodes, the WEBS electrode connects to a shared data bus, allowing a large or small number of them to work together with relatively few physical interconnections. Another unique feature is its ability to switch dynamically between recording and signal source modes. An accelerometer within the device captures real-time information about its physical movement, not only facilitating the measurement of biomechanical signals of interest, but also allowing motion artefacts in the bioelectrical signal to be detected. Each of these innovative features has potentially far-reaching implications in biopotential measurement, both in clinical recording and in other applications. Weighing under 0.45 g and being remarkably low-cost, the WEBS is ideally suited for integration into disposable electrodes. Several such devices can be combined to form an inexpensive digital body sensor network, with shorter set-up time than conventional equipment, more flexible topology, and fewer physical interconnections. One phase of this study evaluated areas of the body as communication channels. The throat was selected for detailed study since it yields a range of voluntarily controllable signals, including laryngeal vibrations and gross movements associated with vocal tract articulation. A WEBS device recorded these signals and several novel methods of human-to-machine communication were demonstrated. To evaluate the performance of the WEBS system, recordings were validated against a high-end biopotential recording system for a number of biopotential signal types. To demonstrate an application for use by a clinician, the WEBS system was used to record 12‑lead electrocardiogram with augmented mechanical movement information

    Hybrid wheelchair controller for handicapped and quadriplegic patients

    Get PDF
    In this dissertation, a hybrid wheelchair controller for handicapped and quadriplegic patient is proposed. The system has two sub-controllers which are the voice controller and the head tilt controller. The system aims to help quadriplegic, handicapped, elderly and paralyzed patients to control a robotic wheelchair using voice commands and head movements instead of a traditional joystick controller. The multi-input design makes the system more flexible to adapt to the available body signals. The low-cost design is taken into consideration as it allows more patients to use this system

    Machine Learning and Signal Processing Design for Edge Acoustic Applications

    Get PDF

    Machine Learning and Signal Processing Design for Edge Acoustic Applications

    Get PDF

    Privacy-preserving and Privacy-attacking Approaches for Speech and Audio -- A Survey

    Full text link
    In contemporary society, voice-controlled devices, such as smartphones and home assistants, have become pervasive due to their advanced capabilities and functionality. The always-on nature of their microphones offers users the convenience of readily accessing these devices. However, recent research and events have revealed that such voice-controlled devices are prone to various forms of malicious attacks, hence making it a growing concern for both users and researchers to safeguard against such attacks. Despite the numerous studies that have investigated adversarial attacks and privacy preservation for images, a conclusive study of this nature has not been conducted for the audio domain. Therefore, this paper aims to examine existing approaches for privacy-preserving and privacy-attacking strategies for audio and speech. To achieve this goal, we classify the attack and defense scenarios into several categories and provide detailed analysis of each approach. We also interpret the dissimilarities between the various approaches, highlight their contributions, and examine their limitations. Our investigation reveals that voice-controlled devices based on neural networks are inherently susceptible to specific types of attacks. Although it is possible to enhance the robustness of such models to certain forms of attack, more sophisticated approaches are required to comprehensively safeguard user privacy

    Sensor-Based Assistive Devices for Visually-Impaired People: Current Status, Challenges, and Future Directions

    Get PDF
    The World Health Organization (WHO) reported that there are 285 million visually impaired people worldwide. Among these individuals, there are 39 million who are totally blind. There have been several systems designed to support visually-impaired people and to improve the quality of their lives. Unfortunately, most of these systems are limited in their capabilities. In this paper, we present a comparative survey of the wearable and portable assistive devices for visuallyimpaired people in order to show the progress in assistive technology for this group of people. Thus, the contribution of this literature survey is to discuss in detail the most significant devices that are presented in the literature to assist this population and highlight the improvements, advantages, disadvantages, and accuracy. Our aim is to address and present most of the issues of these systems to pave the way for other researchers to design devices that ensure safety and independent mobility to visually-impaired people.https://doi.org/10.3390/s1703056

    SUSTAINABLE AND MOBILITY TECHNOLOGIES FOR ASSISTIVE HEALTHCARE AND MONITORING

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    A Highly Accurate And Reliable Data Fusion Framework For Guiding The Visually Impaired

    Get PDF
    The world has approximately 285 million visually impaired (VI) people according to a report by the World Health Organization. Thirty-nine million people are estimated to be blind, whereas 246 million people are estimated to have impaired vision. An important factor that motivated this research is the fact that 90% of VI people live in developing countries. Several systems have been designed to improve the quality of the life of VI people and support the mobility of VI people. Unfortunately, none of these systems provides a complete solution for VI people, and the systems are very expensive. Therefore, this work presents an intelligent framework that includes several types of sensors embedded in a wearable device to support the visually impaired (VI) community. The proposed work is based on an integration of sensor-based and computer vision-based techniques in order to introduce an efficient and economical visual device. The designed algorithm is divided to two components: obstacle detection and collision avoidance. The system has been implemented and tested in real-time scenarios. A video dataset of 30 videos and an average of 700 frames per video was fed to the system for the testing purpose. The achieved 96.53% accuracy rate of the proposed sequence of techniques that are used for real-time detection component is based on a wide detection view that used two camera modules and a detection range of approximately 9 meters. The 98% accuracy rate was obtained for a larger dataset. However, the main contribution in this work is the proposed novel collision avoidance approach that is based on the image depth and fuzzy control rules. Through the use of x-y coordinate system, we were able to map the input frames, whereas each frame was divided into three areas vertically and further 1/3 of the height of that frame horizontally in order to specify the urgency of any existing obstacles within that frame. In addition, we were able to provide precise information to help the VI user in avoiding front obstacles using the fuzzy logic. The strength of this proposed approach is that it aids the VI users in avoiding 100% of all detected objects. Once the device is initialized, the VI user can confidently enter unfamiliar surroundings. Therefore, this implemented device can be described as accurate, reliable, friendly, light, and economically accessible that facilitates the mobility of VI people and does not require any previous knowledge of the surrounding environment. Finally, our proposed approach was compared with most efficient introduced techniques and proved to outperform them

    Estudio de la viabilidad de incorporar una ayuda técnica controlada por voz en una cocina de inducción

    Get PDF
    En este trabajo se analiza la posibilidad de integración de un sistema de captura de sonido en el interior de una cocina de inducción, con el objetivo de proporcionar un sistema de control por voz totalmente integrado en el electrodoméstico. Surge de un proyecto que plantea la compañía de electrodomésticos B/S/H, donde se quiere comprobar la efectividad de utilizar un asistente por voz durante el cocinado.<br /
    corecore