696 research outputs found

    Identification of sleep apnea events using discrete wavelet transform of respiration, ECG and accelerometer signals

    Get PDF
    Sleep apnea is a common sleep disorder in which patient sleep patterns are disrupted due to recurrent pauses in breathing or by instances of abnormally low breathing. Current gold standard tests for the detection of apnea events are costly and have the addition of long waiting times. This paper investigates the use of cheap and easy to use sensors for the identification of sleep apnea events. Combinations of respiration, electrocardiography (ECG) and acceleration signals were analysed. Results show that using features, formed using the discrete wavelet transform (DWT), from the ECG and acceleration signals provided the highest classification accuracy, with an F1 score of 0.914. However, the novel employment of just the accelerometer signal during classification provided a comparable F1 score of 0.879. By employing one or a combination of the analysed sensors a preliminary test for sleep apnea, prior to the requirement for gold standard testing, can be performed

    Real-time human ambulation, activity, and physiological monitoring:taxonomy of issues, techniques, applications, challenges and limitations

    Get PDF
    Automated methods of real-time, unobtrusive, human ambulation, activity, and wellness monitoring and data analysis using various algorithmic techniques have been subjects of intense research. The general aim is to devise effective means of addressing the demands of assisted living, rehabilitation, and clinical observation and assessment through sensor-based monitoring. The research studies have resulted in a large amount of literature. This paper presents a holistic articulation of the research studies and offers comprehensive insights along four main axes: distribution of existing studies; monitoring device framework and sensor types; data collection, processing and analysis; and applications, limitations and challenges. The aim is to present a systematic and most complete study of literature in the area in order to identify research gaps and prioritize future research directions

    Devices and Data Workflow in COPD Wearable Remote Patient Monitoring: A Systematic Review

    Get PDF
    Background: With global increase in Chronic Obstructive Pulmonary Disease (COPD) prevalence and mortality rates, and socioeconomical burden continuing to rise, current disease management strategies appear inadequate, paving the way for technological solutions, namely remote patient monitoring (RPM), adoption considering its acute disease events management benefit. One RPM’s category stands out, wearable devices, due to its availability and apparent ease of use. Objectives: To assess the current market and interventional solutions regarding wearable devices in the remote monitoring of COPD patients through a systematic review design from a device composition, data workflow, and collected parameters description standpoint. Methods: A systematic review was conducted to identify wearable device trends in this population through the development of a comprehensive search strategy, searching beyond the mainstream databases, and aggregating diverse information found regarding the same device. The Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines were followed, and quality appraisal of identified studies was performed using the Critical Appraisal Skills Programme (CASP) quality appraisal checklists. Results: The review resulted on the identification of 1590 references, of which a final 79 were included. 56 wearable devices were analysed, with the slight majority belonging to the wellness devices class. Substantial device heterogeneity was identified regarding device composition type and wearing location, and data workflow regarding 4 considered components. Clinical monitoring devices are starting to gain relevance in the market and slightly over a third, aim to assist COPD patients and healthcare professionals in exacerbation prediction. Compliance with validated recommendations is still lacking, with no devices assessing the totality of recommended vital signs. Conclusions: The identified heterogeneity, despite expected considering the relative novelty of wearable devices, alerts for the need to regulate the development and research of these technologies, specially from a structural and data collection and transmission standpoints.Introdução: Com o aumento global das taxas de prevalência e mortalidade da Doença Pulmonar Obstrutiva Crónica (DPOC) e o seu impacto socioeconómico, as atuais estratégias de gestão da doença parecem inadequadas, abrindo caminho para soluções tecnológicas, nomeadamente para a adoção da monitorização remota, tendo em conta o seu benefício na gestão de exacerbações de doenças crónicas. Dentro destaca-se uma categoria, os dispositivos wearable, pela sua disponibilidade e aparente facilidade de uso. Objetivos: Avaliar as soluções existentes, tanto no mercado, como na área de investigação, relativas a dispositivos wearable utilizados na monitorização remota de pacientes com DPOC através de uma revisão sistemática, do ponto de vista da composição do dispositivo, fluxo de dados e descrição dos parâmetros coletados. Métodos: Uma revisão sistemática foi realizada para identificar tendências destes dispositivos, através do desenvolvimento de uma estratégia de pesquisa abrangente, procurando pesquisar para além das databases convencionais e agregar diversas informações encontradas sobre o mesmo dispositivo. Para tal, foram seguidas as diretrizes PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses), e a avaliação da qualidade dos estudos identificados foi realizada utilizando a ferramenta CASP (Critical Appraisal Skills Programme). Resultados: A revisão resultou na identificação de 1590 referências, das quais 79 foram incluídas. Foram analisados 56 dispositivos wearable, com a ligeira maioria a pertencer à classe de dispositivos de wellness. Foi identificada heterogeneidade substancial nos dispositivos em relação à sua composição, local de uso e ao fluxo de dados em relação a 4 componentes considerados. Os dispositivos de monitorização clínica já evidenciam alguma relevância no mercado e, pouco mais de um terço, visam auxiliar pacientes com DPOC e profissionais de saúde na previsão de exacerbações. Ainda assim, é notória a falta do cumprimento das recomendações validadas, não estando disponíveis dispositivos que avaliem a totalidade dos sinais vitais recomendados. Conclusão: A heterogeneidade identificada, apesar de esperada face à relativa novidade dos dispositivos wearable, alerta para a necessidade de regulamentação do desenvolvimento e investigação destas tecnologias, especialmente do ponto de vista estrutural e de recolha e transmissão de dados

    Health Care with Wellness Wear

    Get PDF

    Wearable Computing for Health and Fitness: Exploring the Relationship between Data and Human Behaviour

    Get PDF
    Health and fitness wearable technology has recently advanced, making it easier for an individual to monitor their behaviours. Previously self generated data interacts with the user to motivate positive behaviour change, but issues arise when relating this to long term mention of wearable devices. Previous studies within this area are discussed. We also consider a new approach where data is used to support instead of motivate, through monitoring and logging to encourage reflection. Based on issues highlighted, we then make recommendations on the direction in which future work could be most beneficial

    Heart rate measurement using the built-in triaxial accelerometer from a commercial digital writing device

    Full text link
    Wearable devices are on the rise. Smart watches and phones, fitness trackers or smart textiles now provide unprecedented access to our own personal data. As such, wearable devices can enable health monitoring without disrupting our daily routines. In clinical settings, electrocardiograms (ECGs) and photoplethysmographies (PPGs) are used to monitor the heart's and respiratory behaviors. In more practical settings, accelerometers can be used to estimate the heartrate when they are attached to the chest. They can also help filter out some noise in ECG signal from movement. In this work, we compare the heart rate data extracted from the built-in accelerometer of a commercial smart pen equipped with sensors (STABILO's DigiPen), with a standard ECG monitor readouts. We demonstrate that it is possible to accurately predict the heart rate from the smart pencil. The data collection is done with eight volunteers, writing the alphabet continuously for five minutes. The signal is processed with a Butterworth filter to cut off noise. We achieve a mean-squared error (MSE) better than 6.685x103^{-3} comparing the DigiPen's computed Δ{\Delta}t (time between pulses) with the reference ECG data. The peaks' timestamps for both signals all maintain a correlation higher than 0.99. All computed heart rates from the pen accurately correlate with the reference ECG signals

    The Apple Watch for monitoring mental health–related physiological symptoms : literature review

    Get PDF
    Background: An anticipated surge in mental health service demand related to COVID-19 has motivated the use of novel methods of care to meet demand, given workforce limitations. Digital health technologies in the form of self-tracking technology have been identified as a potential avenue, provided sufficient evidence exists to support their effectiveness in mental health contexts. Objective: This literature review aims to identify current and potential physiological or physiologically related monitoring capabilities of the Apple Watch relevant to mental health monitoring and examine the accuracy and validation status of these measures and their implications for mental health treatment. Methods: A literature review was conducted from June 2021 to July 2021 of both published and gray literature pertaining to the Apple Watch, mental health, and physiology. The literature review identified studies validating the sensor capabilities of the Apple Watch. Results: A total of 5583 paper titles were identified, with 115 (2.06%) reviewed in full. Of these 115 papers, 19 (16.5%) were related to Apple Watch validation or comparison studies. Most studies showed that the Apple Watch could measure heart rate acceptably with increased errors in case of movement. Accurate energy expenditure measurements are difficult for most wearables, with the Apple Watch generally providing the best results compared with peers, despite overestimation. Heart rate variability measurements were found to have gaps in data but were able to detect mild mental stress. Activity monitoring with step counting showed good agreement, although wheelchair use was found to be prone to overestimation and poor performance on overground tasks. Atrial fibrillation detection showed mixed results, in part because of a high inconclusive result rate, but may be useful for ongoing monitoring. No studies recorded validation of the Sleep app feature; however, accelerometer-based sleep monitoring showed high accuracy and sensitivity in detecting sleep. Conclusions: The results are encouraging regarding the application of the Apple Watch in mental health, particularly as heart rate variability is a key indicator of changes in both physical and emotional states. Particular benefits may be derived through avoidance of recall bias and collection of supporting ecological context data. However, a lack of methodologically robust and replicated evidence of user benefit, a supportive health economic analysis, and concerns about personal health information remain key factors that must be addressed to enable broader uptake

    IMPLEMENTATION OF SERVICE ORIENTED WEARABLE SYSTEM FOR PREVENTIVE HEALTHCARE

    Get PDF
    as an emerging state-of-art technology, wearable systems have been applied to various real life situations and healthcare is one of such important areas. This study reports the implementation of a prototype Service Oriented Wearable System (SOWS). After detailed analysis of healthcare requirements, a system based on Service Oriented Architecture (SOA), wearable devices and sensor networks is implemented to provide continuous remote monitoring, diagnosis, immediate response and treatment for the purpose of preventive healthcare. Technologies based on SOA and sensor networks can support cost effective ubiquitous access to healthcare services, real time service provisioning and processing of heterogeneous data for various wearable devices such as ECG, accelerometer, SpO2 and location sensors. Wearable devices collect and transmit bio signal data to a wearable computer through IEEE/Wi-Fi network. Bio signal data is then uploaded to a Health Server PC (HS-PC) for analysis and storage where it will be accessed by doctors, paramedics or any other authorized personnel

    Wellness, Fitness, and Lifestyle Sensing Applications

    Get PDF
    corecore