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Abstract— Sleep apnea is a common sleep disorder in which
patient sleep patterns are disrupted due to recurrent pauses
in breathing or by instances of abnormally low breathing.
Current gold standard tests for the detection of apnea events
are costly and have the addition of long waiting times. This
paper investigates the use of cheap and easy to use sensors
for the identification of sleep apnea events. Combinations of
respiration, electrocardiography (ECG) and acceleration signals
were analysed. Results show that using features, formed using
the discrete wavelet transform (DWT), from the ECG and
acceleration signals provided the highest classification accuracy,
with an F1 score of 0.914. However, the novel employment
of just the accelerometer signal during classification provided
a comparable F1 score of 0.879. By employing one or a
combination of the analysed sensors a preliminary test for sleep
apnea, prior to the requirement for gold standard testing, can
be performed.

I. INTRODUCTION

Healthy sleep patterns have long been proven to be
essential for maintaining both mental and physical health
[20]. Sleep apnea is a common disorder which seriously
degrades sleep quality and is characterised by recurrent
pauses in breathing (apnea) or by instances of abnormally
low breathing during sleep (hypopnoea). Apnea events can
be classified into two main groups: obstructive apnea (OA)
is the cessation of airflow due to the collapse of the upper
airway while central apnea (CA) is due to the lack of neural
input from the central nervous system [23].

Patients suffering from sleep apnea have been shown to
be more prone to a number of different health complications.
The associated reduction in sleep quality has been proven
to increase the likelihood of accidents both at home and
at work [11][21] whilst patients suffering from sleep apnea
have also been shown to be more susceptible to significant
health risks, including cardiovascular related deaths [3][14].
In conjunction with this increased health risk is the high cost
to national healthcare systems. In 1994, the U.S. National
Commission on Sleep Disorders Research [14] estimated
that the annual cost to the American taxpayer, for disorders
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related to sleep apnea, was in excess of $42 million. This
figure indicates the potential benefit of employing low cost
systems capable of accurately detecting sleep apnea events.

To date there have been a number of independent systems
employed to aid in sleep apnea classification [7][16], how-
ever the widely accepted gold standard diagnostic method
is known as a polysomnograph (PSG). During a PSG the
patient attends a specialised sleep clinic and is monitored
over the course of a single night using multiple different
monitoring systems. These systems commonly include a
measurement of the heart (electrocardiogram (ECG)), the
skeletal muscles (electromyogram (EMG)), eye movement
(electrooculogram (EOG)), respiratory airflow, respiratory
effort and oxygenation saturation of the blood (PPG) [16].
The position of the patient in the bed and the snoring level
is also often recorded to aid in the diagnosis.

This requirement for multiple recording modalities results
in a high cost (a private patient test can cost up to e 1,000)
as well as a large quantity of data which must be examined
post-recording by a trained technician for each patient.
This has commonly lead to long waiting lists for patients
requiring testing. Current research is continuing to examine
the use of less complex systems to accurately classify sleep
apnea events. Examples of this research includes the use of
the ECG to classify between obstructive and central apnea
events [8][24] and the use of accelerometers placed on the
suprasternal notch to screen for sleep apnea events [13].

This paper examines the ability to accurately identify
sleep apnea events by combining data from three different
types of sensors. Classification results are obtained using
a combination of electrocardiogram (ECG), respiration and
acceleration sensors. Results show that the use of one or a
combination of these simple sensors can provide accurate
results in the classification of sleep apnea events.

II. MATERIALS AND METHODS

To allow for an accurate measure of the efficacy of the
proposed classification techniques, the ECG, respiration and
acceleration data was recorded in conjunction with standard
overnight PSG. The three additional signals were recorded
using a “Smartex Wearable Wellness System (WWS)” chest
strap [19]. This section begins with a brief description
detailing the volunteer test patients and, following this, both
the PSG and “Smartex” recording systems are described.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DCU Online Research Access Service

https://core.ac.uk/display/11311546?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


A. Participants

Data was collected using the “Smartex WWS” [19] from
5 adult patients (3 female, mean age 52 years, standard
deviation 5.89 years) during routine PSG recording. All
analysed data was recorded as part of routine sleep apnea
diagnosis. Ethical approval was obtained through the Beau-
mount Research Ethics Committee ( Study 12/63, “Use of
a wearable sensor system to monitor sleep apnoea”, Shirley
Coyle (DCU), Dermot Diamond (DCU), Richard Costello
(RCSI) ). Patient data was analysed post recording and an
exclusion criterion was implemented based on a positive
indication of the presence of sleep apnea events. One female
patient was discovered to not suffer from sleep apnea and
was thus excluded from the study.

B. Protocol & Data Acquisition System

Patient data was recorded overnight in St. Joseph’s Clinic,
Raheny, Dublin, Ireland. During recording the gold standard
PSG monitoring was performed while concurrent measure-
ments were made using the implemented “Smartex” system.
The gold standard PSG provided accurate information as to
the time points and duration of all apnea events observed
overnight, allowing for a detailed measure of the efficacy of
post classification results using the “Smartex” system.

1) Polysomnograph (PSG): As stated previously, PSG
recordings are regarded as the gold standard method for
determining the presence of sleep apnea events. During the
routine recording, a number of patent physiological signs
were monitored including respiration flow, thorax effort,
oxygen saturation, heart rate and breaths per minute. The
body position and snoring output of the patient were also
monitored. These signals provided a database from which
a trained clinician could analyse the data, post recording,
and manually tag the epochs relating to apnea events. The
detected apnea events were tagged as either obstructive
apnea, central apnea, hypopnoea or mixed apnea depending
on their nature. Any epochs in which one or more of the
recorded signals were observed to be noisy were labeled as
an artifact epoch. All remaining epochs were then marked as
clean. Data was recorded for a period of between 6-8 hours
per subject, during which period the patient slept in a bed
situated in an isolated room.

2) Smartex: As described in Section I, three separate
signal modalities were measured concurrently with the PSG
recording. Figure 1 illustrates the “Smartex Wearable Well-
ness System (WWS)” chest strap [19] used to house the three
recording sensors. This WWS is a wearable system based on
textile knitted sensors [15]. The electrocardiography signal
(ECG) is used to monitor the electrical activity associated
with the pumping of the heart. The ECG signal was recorded
using two moistened fabric sensors located at either side of
the ribcage (Figure 1 (b)). The use of these fabric electrodes
eliminates the requirement for adhesive electrodes which can
be cumbersome to apply and have been shown to occa-
sionally cause skin irritation [10], while also allowing for
unlimited use. The ECG signal was recorded at a sampling
rate of 250 Hz.

Fig. 1. Smartex Wearable Wellness System. (a) Respiration sensor
positioned at the front centre of the band. Accelerometer located in the
CSEM recording module which is housed in the indicated pouch. (b) Fabric
ECG electrodes located on the inside of the chest strap.

The acceleration signal was recorded using a tri-axial
accelerometer located in the recording module shown in Fig-
ure 1. This recording module was securely stored in a pouch
located on the front of the chest strap. This accelerometer
was capable of determining patient body position as well as
being a proxy for the respiration signal due to the movement
of the chest. The sampling rate of the accelerometer was set
at 25 Hz.

The respiration signal was also monitored using the chest
strap. The respiration signal was recorded using a piezore-
sistive knitted textile stretch sensor located on the front of
the chest strap as can be seen from Figure 1 (a). As the
subject both inhales and exhales, the force on the stretch
sensor alters, presenting a recordable change in resistance.
This resistance change can then be related to a change in lung
volume. The respiration sensor was also sampled at the lower
frequency rate of 25 Hz. All data recorded was stored on an
on-board SD card for post processing using MATLAB R©.

The data from the Smartex chest strap was synced against
the PSG data post recording using the available information
regarding the patient’s body position. Any change in patient
body position could be determined using the accelerometer
data, the time points relating to positional change could
be aligned with the positional data available from the PSG
analysis.

The “Smartex WWS” chest strap was secured to the
patient’s chest below the pectoral muscles and above the base
of the ribcage using the available velcro. This allowed for
a similar position for both the male and female patients. It
should be noted that the only pre-test requirement was the
wetting of the ECG electrodes. This allowed for a very quick
and easy application of the recording sensors.

III. CLASSIFICATION

This section will describe the post processing performed
on the data. Section III-A describes the initial filtering,
tagging and windowing performed on the data. Section III-
B next describes the discrete wavelet transform (DWT)
which was used to generate the signal features used for
classification while Section III-C describes the regression
tree classifier used to classify the individual signal epochs
as either clean or as containing an apnea event. Finally,
Section III-D describes the F1 score efficacy metric used
to determine the accuracy of the classification algorithm.



A. Data Set

A number of processing steps were completed prior to the
feature selection stage of classification. Initially each signal
was filtered to remove any unwanted frequencies. The ECG
signal was bandpass filtered between 0.05 Hz and 20 Hz.
The DC components were filtered to remove any DC offset
from the signal while the ECG frequencies below 20 Hz
have been shown to contain the majority of the desired ECG
components. Frequencies above this frequency are required
if detection of arrhythmias is desired [9]. The respiration sig-
nals bandpass cut-off frequencies were 0.05 Hz and 0.8 Hz.
This upper limit was chosen as the maximum frequency of
human breathing is unlikely to exceed this value [18]. Finally,
the accelerometer data was low-pass filtered with a cut-off
frequency of 0.8 Hz to again be capable of representing
the respiration signal. All filtering was completed using 2nd

order Butterworth filters. The DC offset was not removed
from the accelerometer signals to allow their use for the
determination of all positional changes. Following the signal
filtering, each signal was normalised to ensure no biasing
during classification.

Using the event information, available post analysis of the
PSG data, the epochs of ECG, respiration and acceleration
data relating to apnea events were tagged for each patient.
This tagged data was next truncated into individual windows,
each 20 seconds in length. As an apnea event must have
a duration longer than 10 seconds to be classified as such
[2], a window length of 20 seconds was chosen to allow
for adequate representation. Each window was individually
tagged as either clean or as containing an apnea event to
allow for classifier training.

Following the windowing of the data, a total number of
1082 windows containing an apnea event were available.
As the number of clean windows (9087) was much higher
than the number of apnea contaminated windows, a random
selection of 864 clean windows was chosen to ensure the
data was balalanced.

B. Feature Extraction using the Discrete Wavelet Transform

Feature extraction was completed using the discrete
wavelet transform (DWT) as this has been shown previously
to provide accurate classification results [8]. The Wavelet
transform operates by decomposing a signal into a number of
time shifted and scaled versions of a selected mother wavelet.
The wavelet expansion of a signal (x(t)) can be written as
[1]:

x(t) =
∑
k

cMkϕMk +

M∑
j=1

∑
k

djkψjk(t), (1)

where

cjk =

∫
x(t)ϕ∗jk(t)dt (2)

are called the scaling coefficients. The scaling functions ϕ
are defined as:

ϕjk(t) =
1√
2j
ϕ

(
t− k2j

2j

)
. (3)

The wavelet coefficients (d) are given by:

djk =

∫
x(t)ψ∗jk(t)dt (4)

with the wavelet functions ψ defined as:

ψjk(t) =
1√
2j
ψ

(
t− k2j

2j

)
. (5)

The details (Dj(t)) and approximations (Aj(t)) of the
wavelet transform at each level (j) can thus be defined as:

Aj(t) =

+∞∑
k=−∞

cjkϕjk(t)

Dj(t) =

+∞∑
k=−∞

djkψjk(t). (6)

The energy of the signals at each decomposition level were
chosen as the features for classification. To ensure indepen-
dent features, the signals chosen to generate the features were
the detail signals at each level and the final approximation
signal. The energy of each signal s(n) was calculated as:

E =
∑
n

|s(n)|2. (7)

In this paper the Daubechies 5 mother wavelet was imple-
mented [4] and the signals were decomposed to the 5th level.
Therefore for each window of data, only 6 features were
calculated for each signal modality. Additional tests were
run whilst applying additional signal features, but accuracy
results were not observed to improve significantly enough to
warrant their inclusion.

C. Choice of Classifier

Classifiers refer to mathematical functions which are em-
ployed to map some input data to a specific category or class.
A classifier uses a set of features (previously extracted from
the input data) to identify from which category a particular
new observation belongs. In order to both create and evaluate
a classifier, an independent testing and training data-set are
required. The training data is first used to create and tune
the classifier. This training set generally encompasses a
larger proportion of the available data than is used during
testing. The testing data is then employed to evaluate the
performance of the classifier.

In this work, classification is performed using a decision
tree [17]. In a decision tree the class labels (i.e. Apnea/Non-
Apnea) act as the leaves and the logical conjunctions (nodes)
act as the branches that lead towards class labels. An example
of a simple decision tree is presented in Figure 2. When a
decision tree is being trained, it analyses the inputted feature
set from each individual observation and develops a weighted
path to every class label. Therefore, as each observation in



the training set is analysed the tree becomes incrementally
refined. Once the decision tree has been trained, any new
observation from the test data-set can be assigned to a
particular class according to its particular feature set. Clas-
sification algorithms are then evaluated by establishing how
accurately they can determine the correct class label for each
observation in the test data-set. Section III-D describes the
efficacy metric used to determine the accuracy of the selected
classifier.

The decision tree classification algorithm has previously
been implemented successfully on all three of the signals
analysed in this paper (acceleration [12], ECG [6] and
respiration [22]). This particular classifier was chosen due
to its robustness, success in similar work and ease of use.

0

0

1

1

X < 0.4 X >= 0.4

Y >= 0.33Y < 0.33

Z >=0.78Z < 0.78

Node

Result

Branch

0: Non Apnea Event
1: Apnea Event

Fig. 2. Simple example of a decision tree with three input features X, Y
and Z.

D. Efficacy Metrics

In order to test the efficacy of the classification procedure
the F1 score metric was employed. This F1 score is a measure
of a test’s accuracy; the closer the determined F1 score is
to unity the more accurate the classification result. Unlike
some other biased metrics, the F1 score considers both the
“precision” and the “recall” of the classification result.

F1 = 2.
Precision× Recall
Precision + Recall

(8)

Precision is calculated as the number of correct results
divided by the number of total results while recall is the
number of correct results divided by the number of results
that should have been returned positive. These metrics are
often described in terms of the metrics true positive (Tp),
false positive (Fp) and false negative (Fn).

Precision =
Tp

(Tp + Fp)

Recall =
Tp

(Tp + Fn)
(9)

A true positive is returned when the classifier accurately
detects an apnea event, a false positive results from the
classifier identifying that an apnea has occurred when in

reality the signal window is clean. A false negative is due to
the classifier identifying the window as clean when in truth
an apnea event is contained in the window.

Ten fold cross-validation was used in this work to assess
how accurately our predictive model will perform in practice.
In ten fold cross-validation, the original data-set is randomly
divided into ten equal sub-sets. One sub-set is selected as
the testing data and the remaining sub-sets are used as the
training data. This process is repeated ten times with each
sub-set acting as the testing data once. The ten results are
then averaged to give a single accuracy estimation for the
classifier. Cross-validation is a way to predict the fit of
a model to a hypothetical validation set when an explicit
validation set is not available.

IV. RESULTS & DISCUSSION
The purpose of the analysis performed in this paper was to

determine the highest classification results obtainable when
classifying between apnea and non-apnea events when using
only simple and easily available sensors. The signals from
the three independent sensor modalities (ECG, respiration
and acceleration) were available to generate the feature set
from which the class regression tree classifier was trained.
Due to the availability of the three signals, seven individual
combinations of feature sets could be obtained, as can be
seen from Table I. A decision was made to use an early
fusion approach to classification although late fusion was
also considered. Investigating the benefits of this (if any)
will be the subject of future work.

Employing information from all three signals (i.e. 1 from
Table I) resulted in an 18 element feature set, using a
combination of any two of the signal modalities (i.e. 2, 3 or
4) produced 12 features while only 6 features were available
when using the signals independently (i.e 5, 6, 7). Table I
presents the F1 score results obtained when employing the
seven different feature sets. Figure 3 presents the results from
Table I visually and in descending order.

TABLE I
F1 SCORE OBTAINED POST CLASSIFICATION USING THE CLASS

REGRESSION TREE CLASSIFIER. THE TABLE PRESENTS THE F1 SCORE

WHEN EMPLOYING DIFFERENT COMBINATIONS OF THE THREE

AVAILABLE SIGNALS TO GENERATE FEATURES.

# Signals Employed F1 Score
1 Respiration ECG Acceleration 0.912
2 Respiration ECG ˜ 0.831
3 Respiration ˜ Acceleration 0.890
4 ˜ ECG Acceleration 0.914
5 Respiration ˜ ˜ 0.750
6 ˜ ECG ˜ 0.830
7 ˜ ˜ Acceleration 0.879

A number of interesting conclusions can be inferred from
the information presented in Figure 3. Primarily, the results
obtained provide a high classification accuracy, similar to that
achieved by deChazal et al. (89 %) [5] and Yilmaz et al. (80-
90 %) [24]. This result strong suggests that the employment



of the simple wearable sensors with a low number of features
is a viable option for sleep apnea classification.

Fig. 3. Impact of changing the input signals on the determined F1 score.
It can be observed that the removal of the acceleration data significantly
degrades the calculated F1 score

Of the three signals, the respiration signal can be seen to
have the lowest individual classification accuracy whilst also
adding little in terms of classification improvement when
added to other signal modalities. The inclusion of the res-
piration signal features with the acceleration signal features
sees a rise in classification accuracy of only 0.011, whilst
its inclusion with the ECG signal features results in a lower
accuracy improvement of just 0.001. Interestingly the highest
classification results are obtained when the respiration signal
is omitted during feature selection. This result may be due
to the accelerometer signal being capable of more accurately
representing the subject’s respiration and thus the respiration
signal obtained using the stretch sensor does not provide
any additional useful information. Further, a change in the
patient’s position can cause a significant variation in the
force placed on the respiration stretch sensor, reducing its
functionality.

Of the three sensors, the accelerometer signal provided the
best performance when employing the sensors independently.
By using only a single sensor, the accuracy dropped by a
mere 0.035 compared to the highest accuracy obtained. This
result demonstrates the realistic opportunity of solely using
the accelerometer signal to attempt to classify sleep apnea
events. Accelerometer sensors are very cheap to produce and
can easily be attached to the subject using either a strap
or an adhesive. Also, as the sensors do not require direct
contact with the skin (as ECG does), it is less likely to output
inaccurate or false results over a full night of testing due to
the motion of the subject causing movement of the sensor

with respect to the skin.
The combination of the accelerometer signal with the ECG

signal provides the best results when employing the full
“Smartex” system. This combination results in an accuracy
of 0.914 allowing for a high confidence rate when applied
over a large number of apnea events.

V. CONCLUSION AND FUTURE WORK

In this paper, an analysis into the use of cheap and easy
to use respiration, ECG and accelerometer sensors for the
classification of sleep apnea events has been investigated.
Results show that the accelerometer signal provides the best
results when a single sensor is used to classify the data. This
result has, to the authors knowledge, never previously been
highlighted. Many authors have discussed the sole use of an
ECG signal to classify the data [5][8][24] however results
shown within this paper instead propose the use of a simple
accelerometer signal for classification purposes. However
more accurate results are available if features from the ECG
data is also included in the analysis. The respiration signal
was determined to not improve the classification results and
thus should not be included in analysis.

The ability to accurately classify the sleep apnea data using
low cost and easy to use sensors can allow for both cheap
pre-PSG testing and for post-diagnostic monitoring of the
efficacy of interventions on an individual’s condition. As
PSG testing can be expensive (approx. e 1,000), the ability
to pre-test for sleep apnea using a cheap and accurate system
could allow the tests to be preliminarily carried out outside
of the clinic environment. This pre-test would reduce the
number of patients who do not suffer from sleep apnea
applying for PSG testing, thus saving them money. The
availability of this pre-test would also reduce the waiting time
for PSG tests which currently can be up to 6 months between
initial referral and testing. As these systems continue to
become more accurate, the requirement for final analysis
using the full PSG system may eventually become redundant.

Although the system proposed provided high accuracy
results when classifying apnea events there is still a re-
quirement to be able to classify between the different apnea
events. This will be the focus of future work as additional
data is required to ensure that a sufficient number of the
separate apnea events are available for analysis.
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