1,403 research outputs found

    Lightweight Encryption Based Security Package for Wireless Body Area Network

    Get PDF
    As the demand of individual health monitoring rose, Wireless Body Area Networks (WBAN) are becoming highly distinctive within health applications. Nowadays, WBAN is much easier to access then what it used to be. However, due to WBAN’s limitation, properly sophisticated security protocols do not exist. As WBAN devices deal with sensitive data and could be used as a threat to the owner of the data or their family, securing individual devices is highly important. Despite the importance in securing data, existing WBAN security methods are focused on providing light weight security methods. This led to most security methods for WBAN providing partial security protocols, which left many possibilities in compromising the system. This paper proposes full security protocol designed for wireless body area networks consisting of light weight data encryption, authentication, and re-keying methods. Encryption and authentication use a modified version of RSA Encryption called PSRSA, developed to be used within small systems such as WBAN. Authentication is performed by using encryption message authentication code (E-MAC) using PSRSA. Rekeying is performed with a method called tokening method. The experiment result and security analysis showed that the proposed approach is as light as the leading WBAN authentication method, ECC authentication, while preventing more attacks and providing smaller communication size which fulfills the highest NIST Authentication Assurance Level (AAL)

    Bluetooth Security Protocol Analysis and Improvements

    Get PDF
    Since its creation, Bluetooth has transformed itself from a cable replacement technology to a wireless technology that connects people and machines. Bluetooth has been widely adapted on mobile phones and PDAs. Many other vendors in other industries are integrating Bluetooth into their products. Although vendors are adapting to the technology, Bluetooth hasn’t been a big hit among users. Security remains a major concern. Poor implementation of the Bluetooth architecture on mobile devices leads to some high profiled Bluetooth hacks. Weak security protocol designs expose the Bluetooth system to some devastating protocol attacks. This paper first explores four Bluetooth protocol-level attacks in order to get deeper insights into the weakness of the Bluetooth security design. It then proposes enhancements to defense against those attacks. Performance comparison will be given based on the implementation of those enhancements on a software based Bluetooth simulator

    Retrofitting Mutual Authentication to GSM Using RAND Hijacking

    Get PDF
    As has been widely discussed, the GSM mobile telephony system only offers unilateral authentication of the mobile phone to the network; this limitation permits a range of attacks. While adding support for mutual authentication would be highly beneficial, changing the way GSM serving networks operate is not practical. This paper proposes a novel modification to the relationship between a Subscriber Identity Module (SIM) and its home network which allows mutual authentication without changing any of the existing mobile infrastructure, including the phones; the only necessary changes are to the authentication centres and the SIMs. This enhancement, which could be deployed piecemeal in a completely transparent way, not only addresses a number of serious vulnerabilities in GSM but is also the first proposal for enhancing GSM authentication that possesses such transparency properties.Comment: 17 pages, 2 figure

    Scalable Authentication and Optimal Flooding in a Quantum Network

    Get PDF

    Security in Distributed, Grid, Mobile, and Pervasive Computing

    Get PDF
    This book addresses the increasing demand to guarantee privacy, integrity, and availability of resources in networks and distributed systems. It first reviews security issues and challenges in content distribution networks, describes key agreement protocols based on the Diffie-Hellman key exchange and key management protocols for complex distributed systems like the Internet, and discusses securing design patterns for distributed systems. The next section focuses on security in mobile computing and wireless networks. After a section on grid computing security, the book presents an overview of security solutions for pervasive healthcare systems and surveys wireless sensor network security

    Decentralized Identity and Access Management Framework for Internet of Things Devices

    Get PDF
    The emerging Internet of Things (IoT) domain is about connecting people and devices and systems together via sensors and actuators, to collect meaningful information from the devices surrounding environment and take actions to enhance productivity and efficiency. The proliferation of IoT devices from around few billion devices today to over 25 billion in the next few years spanning over heterogeneous networks defines a new paradigm shift for many industrial and smart connectivity applications. The existing IoT networks faces a number of operational challenges linked to devices management and the capability of devices’ mutual authentication and authorization. While significant progress has been made in adopting existing connectivity and management frameworks, most of these frameworks are designed to work for unconstrained devices connected in centralized networks. On the other hand, IoT devices are constrained devices with tendency to work and operate in decentralized and peer-to-peer arrangement. This tendency towards peer-to-peer service exchange resulted that many of the existing frameworks fails to address the main challenges faced by the need to offer ownership of devices and the generated data to the actual users. Moreover, the diversified list of devices and offered services impose that more granular access control mechanisms are required to limit the exposure of the devices to external threats and provide finer access control policies under control of the device owner without the need for a middleman. This work addresses these challenges by utilizing the concepts of decentralization introduced in Distributed Ledger (DLT) technologies and capability of automating business flows through smart contracts. The proposed work utilizes the concepts of decentralized identifiers (DIDs) for establishing a decentralized devices identity management framework and exploits Blockchain tokenization through both fungible and non-fungible tokens (NFTs) to build a self-controlled and self-contained access control policy based on capability-based access control model (CapBAC). The defined framework provides a layered approach that builds on identity management as the foundation to enable authentication and authorization processes and establish a mechanism for accounting through the adoption of standardized DLT tokenization structure. The proposed framework is demonstrated through implementing a number of use cases that addresses issues related identity management in industries that suffer losses in billions of dollars due to counterfeiting and lack of global and immutable identity records. The framework extension to support applications for building verifiable data paths in the application layer were addressed through two simple examples. The system has been analyzed in the case of issuing authorization tokens where it is expected that DLT consensus mechanisms will introduce major performance hurdles. A proof of concept emulating establishing concurrent connections to a single device presented no timed-out requests at 200 concurrent connections and a rise in the timed-out requests ratio to 5% at 600 connections. The analysis showed also that a considerable overhead in the data link budget of 10.4% is recorded due to the use of self-contained policy token which is a trade-off between building self-contained access tokens with no middleman and link cost

    Revisiting the Feasibility of Public Key Cryptography in Light of IIoT Communications

    Get PDF
    Digital certificates are regarded as the most secure and scalable way of implementing authentication services in the Internet today. They are used by most popular security protocols, including Transport Layer Security (TLS) and Datagram Transport Layer Security (DTLS). The lifecycle management of digital certificates relies on centralized Certification Authority (CA)-based Public Key Infrastructures (PKIs). However, the implementation of PKIs and certificate lifecycle management procedures in Industrial Internet of Things (IIoT) environments presents some challenges, mainly due to the high resource consumption that they imply and the lack of trust in the centralized CAs. This paper identifies and describes the main challenges to implement certificate-based public key cryptography in IIoT environments and it surveys the alternative approaches proposed so far in the literature to address these challenges. Most proposals rely on the introduction of a Trusted Third Party to aid the IIoT devices in tasks that exceed their capacity. The proposed alternatives are complementary and their application depends on the specific challenge to solve, the application scenario, and the capacities of the involved IIoT devices. This paper revisits all these alternatives in light of industrial communication models, identifying their strengths and weaknesses, and providing an in-depth comparative analysis.This work was financially supported by the European commission through ECSEL-JU 2018 program under the COMP4DRONES project (grant agreement N∘ 826610), with national financing from France, Spain, Italy, Netherlands, Austria, Czech, Belgium and Latvia. It was also partially supported by the Ayudas Cervera para Centros Tecnológicos grant of the Spanish Centre for the Development of Industrial Technology (CDTI) under the project EGIDA (CER-20191012), and in part by the Department of Economic Development and Competitiveness of the Basque Government through the project TRUSTIND—Creating Trust in the Industrial Digital Transformation (KK-2020/00054)
    • …
    corecore