7 research outputs found

    Weakly-supervised evidence pinpointing and description

    Get PDF
    We propose a learning method to identify which specific regions and features of images contribute to a certain classification. In the medical imaging context, they can be the evidence regions where the abnormalities are most likely to appear, and the discriminative features of these regions supporting the pathology classification. The learning is weakly-supervised requiring only the pathological labels and no other prior knowledge. The method can also be applied to learn the salient description of an anatomy discriminative from its background, in order to localise the anatomy before a classification step. We formulate evidence pinpointing as a sparse descriptor learning problem. Because of the large computational complexity, the objective function is composed in a stochastic way and is optimised by the Regularised Dual Averaging algorithm. We demonstrate that the learnt feature descriptors contain more specific and better discriminative information than hand-crafted descriptors contributing to superior performance for the tasks of anatomy localisation and pathology classification respectively. We apply our method on the problem of lumbar spinal stenosis for localising and classifying vertebrae in MRI images. Experimental results show that our method when trained with only target labels achieves better or competitive performance on both tasks compared with strongly-supervised methods requiring labels and multiple landmarks. A further improvement is achieved with training on additional weakly annotated data, which gives robust localisation with average error within 2 mm and classification accuracies close to human performance

    Weakly-Supervised Evidence Pinpointing and Description

    Full text link
    We propose a learning method to identify which specific regions and features of images contribute to a certain classification. In the medical imaging context, they can be the evidence regions where the abnormalities are most likely to appear, and the discriminative features of these regions supporting the pathology classification. The learning is weakly-supervised requiring only the pathological labels and no other prior knowledge. The method can also be applied to learn the salient description of an anatomy discriminative from its background, in order to localise the anatomy before a classification step. We formulate evidence pinpointing as a sparse descriptor learning problem. Because of the large computational complexity, the objective function is composed in a stochastic way and is optimised by the Regularised Dual Averaging algorithm. We demonstrate that the learnt feature descriptors contain more specific and better discriminative information than hand-crafted descriptors contributing to superior performance for the tasks of anatomy localisation and pathology classification respectively. We apply our method on the problem of lumbar spinal stenosis for localising and classifying vertebrae in MRI images. Experimental results show that our method when trained with only target labels achieves better or competitive performance on both tasks compared with strongly-supervised methods requiring labels and multiple landmarks. A further improvement is achieved with training on additional weakly annotated data, which gives robust localisation with average error within 2 mm and classification accuracies close to human performance

    Visual Feature Attribution using Wasserstein GANs

    Full text link
    Attributing the pixels of an input image to a certain category is an important and well-studied problem in computer vision, with applications ranging from weakly supervised localisation to understanding hidden effects in the data. In recent years, approaches based on interpreting a previously trained neural network classifier have become the de facto state-of-the-art and are commonly used on medical as well as natural image datasets. In this paper, we discuss a limitation of these approaches which may lead to only a subset of the category specific features being detected. To address this problem we develop a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN), which does not suffer from this limitation. We show that our proposed method performs substantially better than the state-of-the-art for visual attribution on a synthetic dataset and on real 3D neuroimaging data from patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). For AD patients the method produces compellingly realistic disease effect maps which are very close to the observed effects.Comment: Accepted to CVPR 201

    Classification of Sagittal Lumbar Spine MRI for Lumbar Spinal Stenosis Detection using Transfer Learning of a Deep Convolutional Neural Network

    Get PDF
    Analysis of sagittal lumbar spine MRI images remains an important step in automated detection and diagnosis of lumbar spinal stenosis. There are nu-merous algorithms proposed in the literature that can measure the condition of lumbar intervertebral discs through analysis of the lumbar spine in the sagittal view. However, these algorithms rely on using suitable sagittal im-ages as their inputs. Since an MRI data repository contains more than just these specific images, it is, therefore, necessary to employ an algorithm that can automatically select such images from the entire repository. In this pa-per, we demonstrate the application of an image classification method using deep convolutional neural networks for this purpose. Specifically, we use a pre-trained Inception-ResNet-v2 model and retrain it using two sets of T1-weighted and T2-weighted images. Through our experiment, we can con-clude that this method can reach a performance level of 0.91 and 0.93 on the T1 and T2 datasets, respectively when measured using the accuracy, preci-sion, recall, and f1-score metrics. We also show that the difference in per-formance between using the two modalities is statistically significant and us-ing T2-weighted images is preferred over using T1-weighted images

    Automated measurement of anteroposterior diameter and foraminal widths in MRI images for lumbar spinal stenosis diagnosis

    Get PDF
    Lumbar Spinal Stenosis causes low back pain through pressures exerted on the spinal nerves. This can be verified by measuring the anteroposterior diameter and foraminal widths of the patient’s lumbar spine. Our goal is to develop a novel strategy for assessing the extent of Lumbar Spinal Stenosis by automatically calculating these distances from the patient’s lumbar spine MRI. Our method starts with a semantic segmentation of T1- and T2-weighted composite axial MRI images using SegNet that partitions the image into six regions of interest. They consist of three main regions-of-interest, namely the Intervertebral Disc, Posterior Element, and Thecal Sac, and three auxiliary regions-of-interest that includes the Area between Anterior and Posterior elements. A novel contour evolution algorithm is then applied to improve the accuracy of the segmentation results along important region boundaries. Nine anatomical landmarks on the image are located by delineating the region boundaries found in the segmented image before the anteroposterior diameter and foraminal widths can be measured. The performance of the proposed algorithm was evaluated through a set of experiments on the Lumbar Spine MRI dataset containing MRI studies of 515 patients. These experiments compare the performance of our contour evolution algorithm with the Geodesic Active Contour and Chan-Vese methods over 22 different setups. We found that our method works best when our contour evolution algorithm is applied to improve the accuracy of both the label images used to train the SegNet model and the automatically segmented image. The average error of the calculated right and left foraminal distances relative to their expert-measured distances are 0.28 mm (p = 0.92) and 0.29 mm (p = 0.97), respectively. The average error of the calculated anteroposterior diameter relative to their expert-measured diameter is 0.90 mm (p = 0.92). The method also achieves 96.7% agreement with an expert opinion on determining the severity of the Intervertebral Disc herniations

    Weakly-supervised evidence pinpointing and description

    No full text
    We propose a learning method to identify which specific regions and features of images contribute to a certain classification. In the medical imaging context, they can be the evidence regions where the abnormalities are most likely to appear, and the discriminative features of these regions supporting the pathology classification. The learning is weakly-supervised requiring only the pathological labels and no other prior knowledge. The method can also be applied to learn the salient description of an anatomy discriminative from its background, in order to localise the anatomy before a classification step. We formulate evidence pinpointing as a sparse descriptor learning problem. Because of the large computational complexity, the objective function is composed in a stochastic way and is optimised by the Regularised Dual Averaging algorithm. We demonstrate that the learnt feature descriptors contain more specific and better discriminative information than hand-crafted descriptors contributing to superior performance for the tasks of anatomy localisation and pathology classification respectively. We apply our method on the problem of lumbar spinal stenosis for localising and classifying vertebrae in MRI images. Experimental results show that our method when trained with only target labels achieves better or competitive performance on both tasks compared with strongly-supervised methods requiring labels and multiple landmarks. A further improvement is achieved with training on additional weakly annotated data, which gives robust localisation with average error within 2 mm and classification accuracies close to human performance
    corecore