880 research outputs found

    Weakly-supervised evidence pinpointing and description

    Get PDF
    We propose a learning method to identify which specific regions and features of images contribute to a certain classification. In the medical imaging context, they can be the evidence regions where the abnormalities are most likely to appear, and the discriminative features of these regions supporting the pathology classification. The learning is weakly-supervised requiring only the pathological labels and no other prior knowledge. The method can also be applied to learn the salient description of an anatomy discriminative from its background, in order to localise the anatomy before a classification step. We formulate evidence pinpointing as a sparse descriptor learning problem. Because of the large computational complexity, the objective function is composed in a stochastic way and is optimised by the Regularised Dual Averaging algorithm. We demonstrate that the learnt feature descriptors contain more specific and better discriminative information than hand-crafted descriptors contributing to superior performance for the tasks of anatomy localisation and pathology classification respectively. We apply our method on the problem of lumbar spinal stenosis for localising and classifying vertebrae in MRI images. Experimental results show that our method when trained with only target labels achieves better or competitive performance on both tasks compared with strongly-supervised methods requiring labels and multiple landmarks. A further improvement is achieved with training on additional weakly annotated data, which gives robust localisation with average error within 2 mm and classification accuracies close to human performance

    Weakly-Supervised Evidence Pinpointing and Description

    Full text link
    We propose a learning method to identify which specific regions and features of images contribute to a certain classification. In the medical imaging context, they can be the evidence regions where the abnormalities are most likely to appear, and the discriminative features of these regions supporting the pathology classification. The learning is weakly-supervised requiring only the pathological labels and no other prior knowledge. The method can also be applied to learn the salient description of an anatomy discriminative from its background, in order to localise the anatomy before a classification step. We formulate evidence pinpointing as a sparse descriptor learning problem. Because of the large computational complexity, the objective function is composed in a stochastic way and is optimised by the Regularised Dual Averaging algorithm. We demonstrate that the learnt feature descriptors contain more specific and better discriminative information than hand-crafted descriptors contributing to superior performance for the tasks of anatomy localisation and pathology classification respectively. We apply our method on the problem of lumbar spinal stenosis for localising and classifying vertebrae in MRI images. Experimental results show that our method when trained with only target labels achieves better or competitive performance on both tasks compared with strongly-supervised methods requiring labels and multiple landmarks. A further improvement is achieved with training on additional weakly annotated data, which gives robust localisation with average error within 2 mm and classification accuracies close to human performance

    Visual Feature Attribution using Wasserstein GANs

    Full text link
    Attributing the pixels of an input image to a certain category is an important and well-studied problem in computer vision, with applications ranging from weakly supervised localisation to understanding hidden effects in the data. In recent years, approaches based on interpreting a previously trained neural network classifier have become the de facto state-of-the-art and are commonly used on medical as well as natural image datasets. In this paper, we discuss a limitation of these approaches which may lead to only a subset of the category specific features being detected. To address this problem we develop a novel feature attribution technique based on Wasserstein Generative Adversarial Networks (WGAN), which does not suffer from this limitation. We show that our proposed method performs substantially better than the state-of-the-art for visual attribution on a synthetic dataset and on real 3D neuroimaging data from patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD). For AD patients the method produces compellingly realistic disease effect maps which are very close to the observed effects.Comment: Accepted to CVPR 201

    Coherent backscattering reveals the Anderson transition

    Get PDF
    We develop an accurate finite-time scaling analysis of the angular width of the coherent backscattering (CBS) peak for waves propagating in 3D random media. Applying this method to ultracold atoms in optical speckle potentials, we show how to determine both the mobility edge and the critical exponent of the Anderson transition from the temporal behavior of the CBS width. Our method could be used in experiments to fully characterize the 3D Anderson transition.Comment: Published versio

    Dynamic heterogeneity at the experimental glass transition predicted by transferable machine learning

    Full text link
    We develop a transferable machine learning model which predicts structural relaxation from amorphous supercooled liquid structures. The trained networks are able to predict dynamic heterogeneity across a broad range of temperatures and time scales with excellent accuracy and transferability. We use the network transferability to predict dynamic heterogeneity down to the experimental glass transition temperature, TgT_g, where structural relaxation cannot be analyzed using molecular dynamics simulations. The results indicate that the strength, the geometry and the characteristic length scale of the dynamic heterogeneity evolve much more slowly near TgT_g compared to their evolution at higher temperatures. Our results show that machine learning techniques can provide physical insights on the nature of the glass transition that cannot be gained using conventional simulation techniques

    Explainable artificial intelligence (XAI) in deep learning-based medical image analysis

    Get PDF
    With an increase in deep learning-based methods, the call for explainability of such methods grows, especially in high-stakes decision making areas such as medical image analysis. This survey presents an overview of eXplainable Artificial Intelligence (XAI) used in deep learning-based medical image analysis. A framework of XAI criteria is introduced to classify deep learning-based medical image analysis methods. Papers on XAI techniques in medical image analysis are then surveyed and categorized according to the framework and according to anatomical location. The paper concludes with an outlook of future opportunities for XAI in medical image analysis.Comment: Submitted for publication. Comments welcome by email to first autho

    Domain anomaly detection in machine perception: a system architecture and taxonomy

    Get PDF
    We address the problem of anomaly detection in machine perception. The concept of domain anomaly is introduced as distinct from the conventional notion of anomaly used in the literature. We propose a unified framework for anomaly detection which exposes the multifacetted nature of anomalies and suggest effective mechanisms for identifying and distinguishing each facet as instruments for domain anomaly detection. The framework draws on the Bayesian probabilistic reasoning apparatus which clearly defines concepts such as outlier, noise, distribution drift, novelty detection (object, object primitive), rare events, and unexpected events. Based on these concepts we provide a taxonomy of domain anomaly events. One of the mechanisms helping to pinpoint the nature of anomaly is based on detecting incongruence between contextual and noncontextual sensor(y) data interpretation. The proposed methodology has wide applicability. It underpins in a unified way the anomaly detection applications found in the literature
    • …
    corecore