74 research outputs found

    Multi-Scale Relational Graph Convolutional Network for Multiple Instance Learning in Histopathology Images

    Full text link
    Graph convolutional neural networks have shown significant potential in natural and histopathology images. However, their use has only been studied in a single magnification or multi-magnification with late fusion. In order to leverage the multi-magnification information and early fusion with graph convolutional networks, we handle different embedding spaces at each magnification by introducing the Multi-Scale Relational Graph Convolutional Network (MS-RGCN) as a multiple instance learning method. We model histopathology image patches and their relation with neighboring patches and patches at other scales (i.e., magnifications) as a graph. To pass the information between different magnification embedding spaces, we define separate message-passing neural networks based on the node and edge type. We experiment on prostate cancer histopathology images to predict the grade groups based on the extracted features from patches. We also compare our MS-RGCN with multiple state-of-the-art methods with evaluations on several source and held-out datasets. Our method outperforms the state-of-the-art on all of the datasets and image types consisting of tissue microarrays, whole-mount slide regions, and whole-slide images. Through an ablation study, we test and show the value of the pertinent design features of the MS-RGCN

    Weakly-Supervised Deep Learning Model for Prostate Cancer Diagnosis and Gleason Grading of Histopathology Images

    Full text link
    Prostate cancer is the most common cancer in men worldwide and the second leading cause of cancer death in the United States. One of the prognostic features in prostate cancer is the Gleason grading of histopathology images. The Gleason grade is assigned based on tumor architecture on Hematoxylin and Eosin (H&E) stained whole slide images (WSI) by the pathologists. This process is time-consuming and has known interobserver variability. In the past few years, deep learning algorithms have been used to analyze histopathology images, delivering promising results for grading prostate cancer. However, most of the algorithms rely on the fully annotated datasets which are expensive to generate. In this work, we proposed a novel weakly-supervised algorithm to classify prostate cancer grades. The proposed algorithm consists of three steps: (1) extracting discriminative areas in a histopathology image by employing the Multiple Instance Learning (MIL) algorithm based on Transformers, (2) representing the image by constructing a graph using the discriminative patches, and (3) classifying the image into its Gleason grades by developing a Graph Convolutional Neural Network (GCN) based on the gated attention mechanism. We evaluated our algorithm using publicly available datasets, including TCGAPRAD, PANDA, and Gleason 2019 challenge datasets. We also cross validated the algorithm on an independent dataset. Results show that the proposed model achieved state-of-the-art performance in the Gleason grading task in terms of accuracy, F1 score, and cohen-kappa. The code is available at https://github.com/NabaviLab/Prostate-Cancer

    Label-Efficient Deep Learning in Medical Image Analysis: Challenges and Future Directions

    Full text link
    Deep learning has seen rapid growth in recent years and achieved state-of-the-art performance in a wide range of applications. However, training models typically requires expensive and time-consuming collection of large quantities of labeled data. This is particularly true within the scope of medical imaging analysis (MIA), where data are limited and labels are expensive to be acquired. Thus, label-efficient deep learning methods are developed to make comprehensive use of the labeled data as well as the abundance of unlabeled and weak-labeled data. In this survey, we extensively investigated over 300 recent papers to provide a comprehensive overview of recent progress on label-efficient learning strategies in MIA. We first present the background of label-efficient learning and categorize the approaches into different schemes. Next, we examine the current state-of-the-art methods in detail through each scheme. Specifically, we provide an in-depth investigation, covering not only canonical semi-supervised, self-supervised, and multi-instance learning schemes, but also recently emerged active and annotation-efficient learning strategies. Moreover, as a comprehensive contribution to the field, this survey not only elucidates the commonalities and unique features of the surveyed methods but also presents a detailed analysis of the current challenges in the field and suggests potential avenues for future research.Comment: Update Few-shot Method

    An Aggregation of Aggregation Methods in Computational Pathology

    Full text link
    Image analysis and machine learning algorithms operating on multi-gigapixel whole-slide images (WSIs) often process a large number of tiles (sub-images) and require aggregating predictions from the tiles in order to predict WSI-level labels. In this paper, we present a review of existing literature on various types of aggregation methods with a view to help guide future research in the area of computational pathology (CPath). We propose a general CPath workflow with three pathways that consider multiple levels and types of data and the nature of computation to analyse WSIs for predictive modelling. We categorize aggregation methods according to the context and representation of the data, features of computational modules and CPath use cases. We compare and contrast different methods based on the principle of multiple instance learning, perhaps the most commonly used aggregation method, covering a wide range of CPath literature. To provide a fair comparison, we consider a specific WSI-level prediction task and compare various aggregation methods for that task. Finally, we conclude with a list of objectives and desirable attributes of aggregation methods in general, pros and cons of the various approaches, some recommendations and possible future directions.Comment: 32 pages, 4 figure

    MesoGraph: automatic profiling of mesothelioma subtypes from histological images

    Get PDF
    Mesothelioma is classified into three histological subtypes, epithelioid, sarcomatoid, and biphasic, according to the relative proportions of epithelioid and sarcomatoid tumor cells present. Current guidelines recommend that the sarcomatoid component of each mesothelioma is quantified, as a higher percentage of sarcomatoid pattern in biphasic mesothelioma shows poorer prognosis. In this work, we develop a dual-task graph neural network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score. Tissue is represented by a cell graph with both cell-level morphological and regional features. We use an external multicentric test set from Mesobank, on which we demonstrate the predictive performance of our model. We additionally validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score

    MesoGraph: Automatic profiling of mesothelioma subtypes from histological images.

    Get PDF
    Mesothelioma is classified into three histological subtypes, epithelioid, sarcomatoid, and biphasic, according to the relative proportions of epithelioid and sarcomatoid tumor cells present. Current guidelines recommend that the sarcomatoid component of each mesothelioma is quantified, as a higher percentage of sarcomatoid pattern in biphasic mesothelioma shows poorer prognosis. In this work, we develop a dual-task graph neural network (GNN) architecture with ranking loss to learn a model capable of scoring regions of tissue down to cellular resolution. This allows quantitative profiling of a tumor sample according to the aggregate sarcomatoid association score. Tissue is represented by a cell graph with both cell-level morphological and regional features. We use an external multicentric test set from Mesobank, on which we demonstrate the predictive performance of our model. We additionally validate our model predictions through an analysis of the typical morphological features of cells according to their predicted score
    corecore