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Resumo

Com o aumento de novos casos todos os anos, o cancro continuará a ser a maior causa de morte
a nível mundial. Apesar de os cancros da mama, colo-rectal e cervical estarem entre os 10 mais
prevalentes, a taxa de mortalidade pode ser reduzida através de mais rastreio, detecção precoce,
e melhores abordagens de tratamento. Embora as técnicas de imagem, tais como a radiologia,
permitam a detecção e gestão de casos de cancro a nível anatómico, devem ser feitos mais testes
para avaliar a natureza das lesões. Uma vez que o cancro é uma doença heterogénea, através da
análise das propriedades morfológicas dos tecidos das amostras tumorais, feito pela patologia,
permite a identificação do subtipo e grau da doença, bem como a resposta expectável à terapêutica.

Hoje em dia, as amostras histológicas antes vistas ao microscópio, são agora convertidas em
imagens de alta resolução utilizando um processo chamado whole-slide imaging. Assim, à medida
que mais laboratórios adoptam um fluxo de trabalho digital, as lâminas digitalizadas estão a tornar-
se cada vez mais acessíveis. Para além dos benefícios para a prática clínica, a patologia digital
abriu inúmeras oportunidades de investigação na área de visão por computador. A complexidade da
avaliação de amostras de histopatologia apresenta novos desafios no desenvolvimento de sistemas
de processamento automático de imagem. Contudo, normalmente, estes modelos precisam de ser
treinados de uma forma supervisionada, o que torna necessária uma anotação detalhada fornecida
por patologistas. Com a actual global falta de patologistas, que têm uma carga de trabalho cada
vez maior com o aumento dos programas de rastreio e das taxas de incidência de cancro, estas
anotações são ainda mais difíceis de obter, o que motiva o desenvolvimento de modelos de machine
learning que consigam aprender com pouca supervisão.

O principal objectivo deste projecto de doutoramento é desenvolver sistemas de diagnóstico
assistido por computador para patologia computacional, sem a necessidade de dados anotados com
muito detalhe, contribuindo para o desenvolvimento de métodos de weakly-supervised learning.
O trabalho desenvolvido centra-se em modelos de diagnóstico para cancro colo-rectal, cervical
e cancro da mama, com contribuições como: um estudo de viabilidade sobre o uso de dados
parcialmente anotados para melhorar o desenvolvimento de ferramentas de diagnóstico assistido
por computador directamente a partir de lâminas digitalizadas; uma estratégia semi-supervisionada
para diagnóstico automático de cancro colo-rectal, com a capacidade de focar a atenção dos
patologistas para as áreas mais relevantes dos tecidos; um protótipo de software clínico para
classificação e mapeamento de tecidos em amostras colorrectais; uma abordagem weakly supervised
que segmenta regiões de interesse e classifica displasia cervical; e finalmente, o primeiro trabalho
sobre classificação da sobreexpressão de HER2 em amostras de lesões da mama coradas com
hematoxilina e eosina, sem necessidade de anotações ao nível do pixel.

Por fim, existem ainda muitos desafios a resolver na área da patologia computacional para que
os modelos de machine learning possam efectiva e extensamente aplicados na clínica. No entanto,
espera-se que este trabalho represente um passo em frente no caminho que ainda falta percorrer.

Palavras-chave: Patologia computacional, whole-slide image, weakly-supervised learning, deep
learning, visão por computador, cancro colorectal, cancro cervical, cancro da mama

i



ii



Abstract

With increasing new cases every year, cancer will continue to be the largest cause of death worldwide.
Despite breast, colorectal, and cervical cancers ranking among the 10 most prevalent ones, the
associated death rate can be greatly reduced by screening, earlier detection, and better treatment
approaches. While imaging techniques, such as radiology, enable the detection and management
of cancer cases at the anatomical level, further testing should be done to assess the nature of the
abnormalities. Since cancer is a heterogeneous illness, by analysing the tissue morphological
properties of tumour specimens, the examination of thin histological tissue sections, done by
pathology, enables the identification of the disease sub-type, grade, and also therapy responsiveness.

Nowadays, the histological samples mounted on glass slides before seen in the microscope,
are now converted into large, high-resolution images using a process called whole slide imaging.
Thus, as more laboratories adopt a digital workflow, digitised slides are becoming more and more
accessible. Beyond the benefits for clinical practice, digital pathology has opened up numerous
prospects for study in the field of computer vision. The complexity of pathology assessment
presents fresh difficulties for cutting-edge automatic image processing systems. However, usually,
these models need to be trained in a supervised manner, which renders the necessity of having
detailed annotation provided by the experts. With the current global lack of pathologists, that have
increased workloads with the rise of screening programmes and cancer incidence rates, combined
with the huge size of the images, these annotations are even more difficult to obtain, which motivates
the development of machine learning models that can learn with little supervision.

The primary objective of this doctoral project is to design computer-aided diagnosis systems for
computational pathology, without the requirement for much detailed annotated data, contributing to
the development of weakly-supervised learning methods. The developed work is focused on models
for colorectal, cervical and breast cancer diagnosis, with contributions to the field as: a feasibility
study on leveraging partially annotated datasets to drive the development of computer-aided
diagnosis tools for digital pathology, directly from whole-side images; a semi-supervised strategy
for colorectal cancer automatic diagnosis, with the capability to guide pathologists’ attention
towards the most relevant tissue areas; an AI-based clinical software prototype for grading and
tissue mapping in colorectal samples; a weakly-supervised approach that segments regions of
interest and grades cervical dysplasia form there; and finally, the first published work on the
classification of HER2 overexpression status on haematoxylin and eosin stained breast cancer slides,
without the need for pixel-level annotations.

In the end, there are still many obstacles to overcome in the field of computational pathology,
so machine learning models can effectively get closer to clinical applicability. However, this work
is expected to be a step forward in the path that is still left.

Keywords: Computational pathology, whole-slide image, weakly-supervised learning, deep
learning, computer vision, colorectal cancer, cervical cancer, breast cancer
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Chapter 1

Introduction

1.1 Context & background

Cancer is the leading cause of death worldwide, with almost 9.9 million deaths and around 18.1

million new cases, in 2020, of which breast, colorectal and cervical cancers are among the 10

most common ones. However, despite its increasing incidence trend, the mortality rate can be

significantly decreased with screening, earlier detection and better treatment strategies [1].

While imaging techniques, such as radiology, enable the detection and management of cancer at

the anatomical level, further testing should be done in order to assess the nature of the abnormalities.

Since cancer is a heterogeneous disease, histopathology, the study of thin histological tissue

sections of tumour specimens, allows the identification of disease sub-type, grade and, in some

cases, treatment responsiveness, by assessing tissue morphological characteristics [2]. Thus,

pathologists are responsible for the detailed diagnosis of samples collected during biopsies and

surgery, determining the precise type and severity of tumours and thus playing a critical role in the

management of cancer patients.

With the traditional pathology workflow, tissues are prepared and mounted in glass slides, which

requires a staining step to highlight the different tissue structures. The standard staining technique

uses a combination of haematoxylin and eosin (H&E) to highlight the nuclei and cytoplasm of cells:

haematoxylin binds to DNA, dying the nuclei blue/purple and eosin binds to proteins and dyes other

structures pink. A more advanced stain technique, immunohistochemistry (IHC), highlights the

presence of specific antigens in the tissue, such as hormone receptors or cell proliferation factors [3].

At the moment, IHC is the standard technique often used to achieve a complete tumour diagnosis,

which implies extra time and costs. At the moment, there are no identified morphological features

on H&E slides that can be used for such evaluation.

Nowadays, with the transition of pathology labs to the digital era, histological glass slides are

digitised into a large high-resolution image, through a technique known as whole slide imaging

(WSI) or "virtual microscopy". Thus, WSI are becoming increasingly available, with more labora-

tories adopting a digital workflow [4–6]. And while this multi-step process requires an additional

scanning step (Figure 1.1), the benefits far outweigh the increased initial overhead of these steps.

3
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For example, access to archived cases, collaboration with external laboratories, and data sharing

are all made easier. For example, the peer review of a WSI is completed at a quicker pace with a

digital pathology workflow. In addition, the ability to easily access images mitigates the risk of

errors, making diagnosis more auditable. In fact, due to technological advances, the digitisation of

pathology data can support the work conducted by pathologists, enabling fastness, reproducibility

and precision in diagnosis [2].

Figure 1.1: Digital pathology workflow, from collecting the biopsy sample to the WSI visualisation.

Over the last decade, the digitisation of histopathology images opened many research opportu-

nities for the field of computer-aided image analysis [2, 3]. In fact, due to the high-resolution and

complex nature of whole-slide image (WSI) evaluation, advances in image analysis are required,

which provides the opportunity to apply and advance image processing techniques, as well as AI

methodologies, such as machine learning (ML) and deep learning (DL) algorithms [2, 3, 7, 8].

Moreover, the integration of AI into healthcare routines is a required milestone for the years to come,

and thus, in terms of pathology-focused research, many DL architectures have been applied with

many different tasks in mind, either to predict diagnoses or even to identify new biomarkers [8–10].

Regarding the field of AI, and its application in computational pathology, DL models [11],

which consist of multiple layers of processing to learn different levels of data representation, are the

most common and promising methods nowadays. The networks are composed of multiple layers,

each with multiple nodes. The large numbers of hidden layers confer depth to the networks, hence

the name. Each node performs a weighted sum of its inputs and then feeds it into a non-linear

function, the result of which is passed forward as input to the following layer and so on until

the last layer, which provides the network output. In this way, these models have the intrinsic

ability to learn features, directly from the input data, useful for the task at hand [11]. In particular,

convolutional neural networks (CNN) are applied to images and automatically extract features,

which are then used to identify objects/regions of interest or to classify the underlying diagnosis [12].

In digital pathology, this type of model is used, for example, for mitosis detection [13, 14], tissue



1.2 Motivation and objectives 5

segmentation [15, 16], cancer grading [17, 18] or histological classification [19, 20]. Additionally,

there are also predictive systems that attempt to estimate the patient’s probability of survival [21, 22].

Despite the popularity, clear potential, progress and good results of DL in computer vision,

and medical imaging, in particular, researchers should carefully consider and manage its pros and

cons [7, 23]. Indeed, digital pathology brings some specific challenges that need to be addressed:

• High dimensionality of data. Histology images are extremely informative, but at the cost of

high dimensionality, usually over 50,000×50,000 pixels [23]. Hence, these images do not

fit in the memory of a Graphics Processing Unit (GPU), which is usually needed to train DL

models. Current methods either downsample the original image or extract multiple smaller

patches, choosing between the cost of losing pixel information or losing spatial information,

respectively;

• Data variability, due to the nearly infinite patterns resulting from the basic tissue types, and

the lack of standardisation in tissue preparation, staining and scanning;

• Lack of annotated data, since extensive annotation is subjective, tedious, expensive and

time-consuming;

• Non-boolean diagnosis, especially in difficult and rare cases, which makes the diagnosis

process more complex;

• Need for interpretability/explainability, in order to be reliable, easily debugged, trusted and

approved [7, 23, 24].

Therefore, the research community has the opportunity to develop robust algorithms with high

performance, transparent and as interpretable as possible, always designed and validated in partner-

ship with pathologists. To this end, one can take advantage of some well-known techniques such as

transfer learning (using pre-trained networks instead of training from scratch), weakly/unsupervised

learning (analysing images only with slide-level labelling), generative frameworks (by learning to

generate images, the algorithm can understand their main distinctive features) or multitask learning

(learning interrelated concepts may produce better generalisations) [23].

1.2 Motivation and objectives

Beyond the advantages for clinical practice, digital pathology has created many research opportuni-

ties in the computer vision field, with the complex nature of pathology assessment bringing new

challenges to advanced automatic image processing systems. However, there is a global shortage

of pathologists [25], that have increased workloads with the growth of screening programmes

and cancer incidence rates. Therefore, the annotation usually required to train machine learning

models represents an extra burden in pathologists’ routine, making them even more challenging

to obtain. How can this label scarcity be dealt with? How can pathology classification models be

developed with robustness from lower supervision? How can models for smaller tissue portions
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be effectively trained with high-level labels, such as slide diagnoses? These are the questions

that will be addressed throughout this thesis, especially for colorectal, cervical and breast tissue

sample analysis. The main goal is to develop medical image diagnostic tools that can be used in

clinical practice, to aid clinicians and, indirectly, patients towards more personalised precision

cancer treatments. With this work, new CAD systems for computational pathology are proposed,

with state-of-the-art results, developed without the need for many extensively annotated data, thus

contributing to the development of weakly-supervised learning methods.

1.3 List of publications

The contributions of this doctoral research to the computational pathology field have been dis-

seminated as part of fifteen scientific publications. These are (clustered by type and in reverse

chronological order):

• Articles in international journals:

1. S.P. Oliveira*, D. Montezuma*, A. Moreira*, D. Oliveira, P.C. Neto, A. Monteiro, J.

Monteiro, L. Ribeiro, S. Gonçalves, I.M. Pinto and J.S. Cardoso. A CAD system for

automatic dysplasia grading on H&E cervical whole-slide images. Scientific reports,

2022 [submitted, waiting for decision]

2. P.C. Neto*, D. Montezuma*, S.P. Oliveira*, D. Oliveira, J. Fraga, A. Monteiro, J.

Monteiro, L. Ribeiro, S. Gonçalves, S. Reinhard, I. Zlobec, I.M. Pinto and J.S. Cardoso.

A CAD System for Colorectal Cancer from WSI: A Clinically Validated Interpretable

ML-based Prototype. Nature Communications, 2022 [submitted, waiting for decision]

3. Diana Montezuma, S.P. Oliveira, P.C. Neto, D. Oliveira, A. Monteiro, J.S. Cardoso and

I.M. Pinto. Annotating for Artificial Intelligence applications in Digital Pathology: a

practical guide for pathologists and researchers. Modern Pathology, 2022 [accepted,

waiting for publication]

4. P.C. Neto*, S.P. Oliveira*, D. Montezuma*, J. Fraga, L. Ribeiro, S. Gonçalves, I.M.

Pinto and J.S. Cardoso. iMIL4PATH: A Semi-Supervised Interpretable Approach for

Colorectal Whole-Slide Images. Cancers, 14(10):2489, 2022

5. S.P. Oliveira*, P.C. Neto*, J. Fraga *, D. Montezuma, A. Monteiro, J. Monteiro, L.

Ribeiro, S. Gonçalves, I.M. Pinto and J.S. Cardoso. CAD systems for colorectal cancer

from WSI are still not ready for clinical acceptance. Scientific Reports, 11(1):1-15,

2021

6. S.P. Oliveira, J.R. Pinto, T. Gonçalves, R. Canas-Marques, M.J. Cardoso, H.P. Oliveira

and J.S. Cardoso. Weakly-Supervised Classification of HER2 Expression in Breast

Cancer Haematoxylin and Eosin Stained Slides. Applied Sciences, 10(14):4728, 2020

*Shared co-first authorship
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• Articles in international conference proceedings:

1. T. Albuquerque, A. Moreira, B. Barros, D. Montezuma, S.P. Oliveira, P.C Neto, J.

Monteiro, L. Ribeiro, S. Gonçalves, A. Monteiro, I.M. Pinto and J.S. Cardoso. Quality

Control in Digital Pathology: Automatic Fragment Detection and Counting. In 44th

Annual International Conference of the IEEE Engineering in Medicine & Biology

Society (EMBC), 2022 [not covered]

• Abstracts in international conferences:

1. J. Romão, D. Montezuma, S.P. Oliveira, P.C. Neto, J. Monteiro, L. Ribeiro, S. Gonçalves,

A. Monteiro, I.M. Pinto and J.S. Cardoso. Computer-aided tool for CRC diagnosis:

from the AI model to the clinical software prototype. In 18th European Congress on

Digital Pathology (ECDP), SY12.04, 2022 (presented by the thesis author)

2. T. Albuquerque, D. Montezuma, S.P. Oliveira, P.C. Neto, J. Monteiro, L. Ribeiro, S.

Gonçalves, A. Monteiro, I.M. Pinto and J.S. Cardoso. Quality checkpoint in pathology

specimens handling: an AI system to automate fragment detection and count. In 18th

European Congress on Digital Pathology (ECDP), SY05.03, 2022 [not covered]

3. P.C. Neto, S.P. Oliveira, D. Montezuma, J. Fraga, I.M. Pinto and J.S. Cardoso. Col-

orectal Biopsies Assessment Using Weakly Supervised Classification of Whole-Slide

Images. In 17th European Congress on Digital Pathology (ECDP), OP01-9, 2021

4. D. Montezuma, J. Fraga, S.P. Oliveira, P.C. Neto, A. Monteiro and I.M. Pinto. Anno-

tation in Digital Pathology: how to get started? Our experience in classification tasks

in Pathology. In 33rd European Congress of Pathology–Abstracts, Virchows Archiv,

479(1):S1-S320, 2021

• Extended abstracts in national conference proceedings:

1. S.P. Oliveira, P.C. Neto and J.S. Cardoso. A semi-supervised approach for colorectal

cancer diagnosis from H&E whole slide images. In 27th Portuguese Conference in

Pattern Recognition (RECPAD), 2021

2. S.P. Oliveira, J.R. Pinto, T. Gonçalves, H.P. Oliveira and J.S. Cardoso. “IHC Classi-

fication in Breast Cancer H&E Slides with a Weakly-Supervised Approach. In 26th

Portuguese Conference in Pattern Recognition (RECPAD), 2020

3. S.P. Oliveira, H.P. Oliveira. Automatic Segmentation of Invasive Breast Cancer on

Whole-Slide Images. In 25th Portuguese Conference in Pattern Recognition (RECPAD),

2019

4. S.P. Oliveira, M.J. Cardoso, J.S. Cardoso and H.P. Oliveira. Radio-Pathomics Approach

for Breast Tumor Signature: an overview. In 24th Portuguese Conference in Pattern

Recognition (RECPAD), 2018
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1.4 Collaborations

During this doctoral project, the author established several close collaborations with researchers,

not only from the VCMI research group1, at INESC TEC, but also from national and international

institutions, which have added extra value to the work carried out over the last few years.

1.4.1 Research projects

The CADpath.AI project2, a collaboration between INESC TEC and the national biggest private

pathology laboratory, IMP Diagnostics, aimed to develop a tool capable of diagnosing colorectal

and cervical cancer through the automatic analysis of histological samples. To this end, the work is

focused on learning algorithms, mainly deep learning techniques, to identify and characterise struc-

tural and morphological features on WSI. The author of this thesis contributed to the development

of the classification algorithms and assisted in the design of a prototype to be integrated into the

IMP laboratory’s digital workflow.

Following the work developed in this project, particularly in the application for colorectal

cancer, the author was invited as one of the speakers at the "Joint Symposium Digestive Diseases

Pathology (GI) & IT in Pathology", at the 34th European Congress of Pathology 2022, in Basel.

1.4.2 MSc thesis and internships supervision

The author of this thesis collaborated as co-supervisor, alongside Hélder P. Oliveira (supervisor), in

the development of João Alves’ work entitled "Prostate Cancer Automatic Grading from Digitized

H&E-stained Histopathology Slides" (2021), presented to FEUP as part of the Integrated Master’s

degree in Informatics and Computing Engineering.

Besides the abovementioned dissertation, the author also collaborated in the supervision of six

more students on curricular, extra-curricular and internships and summer internships related to the

computational pathology field (presented in reverse chronological order):

• Ana Moreira, extra-curricular internship, 2022, "Epithelium segmentation on cervical tissue

samples" (co-supervisor, alongside Jaime S. Cardoso)

• Inês Campos, extra-curricular internship, 2022, "HER2 over-expression classification on

H&E breast samples" (supervisor)

• Guilherme Barbosa, summer internship, 2021, "Explainable AI for computational pathology:

identify and explain disease" (co-supervisor, alongside Wilson Silva)

• Ana Filipa Ferreira, curricular internship, 2021, "Breast cancer: classification of HER2 status

based on H&E slides", (co-supervisor, alongside Jaime S. Cardoso)

1vcmi.inesctec.pt
2CADpath.AI was funded by the European Regional Development Fund (ERDF), through the Operational Programme

for Competitiveness and Internationalisation (COMPETE 2020), within the project POCI-01-0247-FEDER-045413.
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• Rui Santos, Leonor Sousa and Ana Filipa Ferreira, summer internship, 2020, "Breast cancer

histopathology image segmentation/classification" (supervisor)

1.4.3 Challenges

In 2019, alongside Isabel Rio-Torto, João R. Pinto and Tiago Gonçalves, the author of this thesis

participated in the HEROHE challenge3 (held as part of the European Congress on Digital Pathology

- ECDP 2020), where the goal was to automatically identify HER2 positive and negative breast

cancer specimens, by evaluating only the morphological features present on H&E slides.

In 2020, together with Pedro Costa and Tânia Pereira, the author joined the PANDA challenge4,

the largest histopathology competition to date (with 10,616 prostate biopsy samples), organised by

Radboud UMC and Karolinska Institutet, that aimed to develop an AI algorithm for prostate cancer

Gleason grading.

1.4.4 Scientific events organisation

This doctoral work and the abovementioned research project, CADpath.AI, motivated the proposal

of two workshops on the computational pathology topic, at two renowned international conferences

on computer vision:

• In 2021, INESC TEC (VCMI research group) and IMP Diagnostics, together with Google

Health (USA), Karolinska Intitutet (Sweden) and Radboud (The Netherlands), organised the

workshop on Computational Challenges in Digital Pathology (CDpath), hosted at the Inter-

national Conference on Computer Vision (ICCV), where the author of this thesis collaborated

as one of the main organisers, program chair and publicity chair.

• In 2022, the same team, jointly with NTUA (Greece) and the University of Lincoln (UK),

organised the workshop on AI-enabled Medical Image Analysis: digital pathology and

radiology/COVID19 (AIMIA), hosted at the European Conference on Computer Vision

(ECCV), where the author collaborated as one of the main organisers, program chair (digital

pathology track) and publicity chair.

Additionally, the author helped in the organisation of two other workshops related to the

biometrics topic: the 2020 edition of the International Workshop on Biometrics and Forensics

(IWBF), organised by INESC TEC (VCMI research group) and NTNU; and the three editions of the

Workshop on Explainable & Interpretable Artificial Intelligence for Biometrics (xAI4Biometrics),

hosted yearly at the IEEE/CVF Winter Conference on Applications of Computer Vision (WACV),

from 2021 to 2023. In all these events, she has collaborated as publicity chair.

Since 2017, the author was also involved in the VISUM summer school on computer vision and

machine intelligence, an event organised by the VCMI research group. In the 5th edition (2017), she

3https://ecdp2020.grand-challenge.org/
4https://www.kaggle.com/c/prostate-cancer-grade-assessment
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was part of the staff, during the summer school week; from the 6th to the 9th (2018-2021) editions,

she was part of the organising committee, working on the website, social media and logistics; and

in the 10th edition (2022), she was a co-chair, alongside Ana Rebelo and Wilson Silva.

1.5 Document structure

The remainder of this document is composed of four parts, besides this introduction, which offers

an overview of the fundamental concepts related to computational pathology, and summarises the

contributions of this doctoral work.

Part II is centred on colorectal cancer grading, presenting the clinical background and the

state-of-the-art on the topic in Chapter 2, and the proposed approaches from Chapter 3 to Chapter 5.

It starts with an evaluation of the dataset requirements, followed by the proposal of a weakly-

supervised model to grade CRC. Additionally, a framework to integrate this model into clinical

practice is presented, together with a clinical evaluation of the results.

Part III covers the work developed on cervical cancer diagnosis. Chapter 6 introduces the

clinical aspects of cervical cancer and an overview of the state-of-the-art work on dysplasia grading

from H&E cervical tissue samples, and Chapter 7 details the proposed framework, from tissue

segmentation to slide classification, with different levels of annotation.

Part IV focuses on breast cancer diagnosis, especially on classifying HER2 expression directly

from H&E samples. Similarly to the last ones, this part starts by introducing some clinical insights

about breast cancer in Chapter 8, where the state-of-the-art on computational pathology for breast

HER2 scoring is also summarised. Finally, in Chapter 9 an approach to this topic is proposed, based

on cross-domain adaptation and weakly-supervised learning.

The last Part, Chapter 10, summarises the contributions of this doctoral work and concludes

this thesis with some final remarks and ideas for future work.
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Chapter 2

Colorectal cancer insights

2.1 Epidemiology

Colorectal cancer (CRC) represents one of the major public health problems today. Globocan

estimated data for 2020 show that CRC is the third most incident cancer (10% of all cancers)

and the second most deadly (9.4%; only surpassed by lung cancer, 18%) [26, 27]. CRC is a

disease of modern times: the highest rates of incidence happen in developed countries [28]. As

the world becomes richer, and people shift to a western lifestyle, the incidence of CRC is expected

to increase, since it is a multifactorial disease resulting from lifestyle, genetic, and environmental

factors [28, 29]. Population growth and ageing lead to an increased incidence of the disease, as

well as better and more numerous screening programs for early detection and prevention. The

prevalence of screening among individuals aged 50 years and older increased from 38%, in 2000,

to 66%, in 2018, according to data from the National Center for Health Statistics (NHIS) [30].

Importantly, CRC is a preventable and curable cancer if detected early on, and, therefore, screening

is an effective tumour prevention measure [31]. Screening determines the decrease in mortality

through timely detection and removal of adenomatous polypoid (pre-malignant) lesions, promoting

the interruption of progression to cancer. It should begin with colonoscopy in asymptomatic

individuals aged 50 years or over (and without personal or family risk factors for CRC) and

repeated every ten years if normal [32]. It is worth mentioning that, due to the Covid-19 pandemic,

CRC screening programmes have been disrupted worldwide. As such, it is crucial that catch-

up screening is provided as soon and effectively as possible, hoping to mitigate the impact on

CRC deaths [33, 34]. Computer-aided diagnosis (CAD) solutions in CRC could help in this task,

contributing to improving pathology diagnostic capacity.

2.2 CRC dysplasia grading

During the pathological assessment, colorectal biopsies/polyps can be stratified into non-neoplastic,

low-grade dysplasia (LGD), high-grade dysplasia (HGD, including intramucosal carcinomas) and

invasive carcinomas, regarding their development sequence. Colorectal dysplasia refers to the

13



14 Colorectal cancer insights

pre-malignant abnormal development of cells/tissues, which can eventually progress to tumour

lesions. It is classified in low- and high-grade, with the last conferring a relatively higher risk of

cancer (Figure 2.1).

(a) Non-neoplastic (b) Low-grade lesion (c) High-grade lesion

Figure 2.1: Normal colonic mucosa and dysplastic progression. Examples from CADpath dataset.

It is well-known that grading colorectal dysplasia is a somewhat subjective issue. In a study to

evaluate inter-observer variability in HGD diagnosis, five gastrointestinal pathologists conducted a

consensus conference in which criteria for colorectal HGD were developed [35]. When grading

the same 107 polyps, the inter-observer agreement was found to be poor both before and after the

consensus. Other studies have also shown sub-optimal agreement in grading colorectal dysplasia [36,

37]. Despite this, the most recent guidelines from the European Society of Gastrointestinal

Endoscopy (ESGE), as well as those from the US multi-society task force on CRC, continue to

recommend surveillance for polyps with high-grade dysplasia regardless of their size [32, 38].

Patients requiring surveillance after polypectomy include those with complete removal of:

• at least one adenoma ≥ 10 mm or with high-grade dysplasia;

• five or more adenomas;

• any serrated polyp ≥ 10 mm or with dysplasia [32].

As such, it remains a current practice in most countries (although not in every laboratory) to

evaluate and grade colorectal dysplasia.

2.2.1 Grading guidelines

To date, there are still no tangible criteria on what distinguishes the high end of LGD from the

low end of HGD. Although some reporting guidelines regarding grading dysplasia in colorectal

biopsies [39–41], objective criteria are still lacking. It is fairly easy for a pathologist to diagnose a
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typical low-grade or high-grade adenoma but since in fact, these lesions exist in a continuum, the

correct assessment of many intermediate cases is more difficult. Nevertheless, protocols such as

the English National Health System (NHS) bowel cancer screening programme guidance, with

guidelines from the bowel cancer screening programme pathology group [39] or the Pan-Canadian

consensus for colorectal polyps report [41], can aid pathologists in grading colorectal lesions more

objectively. Additional information from reference books, such as the World Health Organization

(WHO) Classification of Tumours: digestive system tumours [27], can also assist in this task.

The most relevant characteristics that differentiate low- and high-grade dysplasia are detailed in

Table 2.1.

Table 2.1: Colorectal low- and high-grade dysplasia characterisation.

Low-grade dysplasia High-grade dysplasia

Extension –
Changes must involve more than two
glands (except in tiny biopsies)

Low power
magnification

Lack of architectural complexity sug-
gests low-grade dysplasia throughout

Alterations should be identifiable at low po-
wer: complex architectural abnormalities,
epithelium looks thick, blue, disorganised
and “dirty”

Cytology/
Architecture

Does not combine cytological high-
grade dysplasia with architectural
high-grade features

Needs to combine high-grade cytological
and high-grade architectural alterations

Architectural
features*

Gland crowding, showing parallel dis-
position, with no complexity (no back-
to-back or cribriform); Global archi-
tecture may vary from tubular to villous

Complex glandular crowding and irregular-
ity; Prominent budding; Cribriform appear-
ance and back-to-back glands; Prominent
intra-luminal papillary tufting

Cytological
features**

Nucleus are enlarged and hyper-chro-
matic, many times cigar-shaped; Nucle-
us maintain basal orientation (only up
to the lower half of the height of the
epithelium, although in some cases we
can see glands with full-thickness nu-
clear stratification - not HGD if the ar-
chitecture is bland); There is no loss
of cell polarity or pleomorphism; No
atypical mitosis; Maintained cytologi-
cal maturation

Noticeably enlarged nuclei, often with a
dispersed chromatin pattern and evident
nucleoli; Loss of cell polarity or nuclear
stratification to the extent that the nuclei
are distributed within all 1/3 of the height
of the epithelium; Atypical mitoses;
Prominent apoptosis/necrosis, giving the
lesion a "dirty" appearance; Lack of cy-
tological maturation

* Architectural features: gland morphology and placement. ** Cytological features: cell level characteristics.
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2.3 Computational pathology on CRC

Although the rise of DL and its application in computer vision is critical to computer-aided diagnosis

(CAD) research, the development of AI applications for colorectal cancer (CRC) diagnosis on

WSI is still limited, as noted by Thakur et al. [42]: of the 30 papers reviewed, only 20% have a

diagnosis as a final goal. In fact, the majority of the papers deal with a wide variety of tasks, with a

particular focus on tissue segmentation, the goal of 62% of the reviewed papers [42]. Last year,

Wang [43] et al. also published a review on the application of AI to CRC diagnosis and therapy,

reflecting the same trend. However, CRC diagnosis is a growing application, with an increasing

number of publications in recent years. In the next section, we collect and describe the published

works on CRC diagnosis, with a particular focus on slide diagnosis (Table 2.2), but also summarise

some works using partial regions of tissue (region crops or tiles) without aggregation for WSI.

2.3.1 CRC diagnosis on WSI

In 2012, Kalkan et al. [44] proposed a method for CRC automatic detection from Haematoxylin

and Eosin (H&E) slides, combining textural and structural features of smaller patches (1024×1024

pixels). Firstly, the patches are classified into normal, inflamed, adenomatous or cancer with a k-NN

classifier, based on local shape and textural features, such as Haralick features, Gabor filters features

and colour histograms features. Then, the (up to) 300 patches representing the slide are summarised

in the average probabilities for all the four primary classes, and used as a feature vector for a

logistic-linear regressor, to obtain a final slide diagnosis: normal or cancer. The proposed method

was trained on 120 H&E stained slides and achieved an Area Under the Curve (AUC) of 0.90 and an

average accuracy of 87.69%, with accuracies of 79.17% and 92.68% for cancer and normal slides,

respectively. Similarly, using traditional computer vision techniques, Yoshida et al. [45] presented

an approach to classify CRC H&E slides into 4 types: non-neoplastic, adenoma, carcinoma and

unclassifiable. For each WSI, all tissue regions are identified, summing 1328 sections from 1068

H&E slides. Then, each section is processed for blur detection and colour normalisation before

the analysis in two steps: cytological atypia analysis and structural atypia analysis. In the first

step, the method proposed by Cosatto et al. [46] is used, based on multiple instance learning (MIL)

formulation using a Multilayer Perceptron (MLP), to grade the degree of cytological alteration of

the tissue (high or low). Then, the image is classified into low atypia, intermediate atypia, high

atypia or unclassifiable, based on structural nuclear features and cytoplasmatic features, extracted

from consecutive ROIs, that are summarised by the mean-square of the top 3 ROIs. Finally, each

image is classified based on the combination of structural atypia analysis result (high, intermediate

or low) and the cytological atypia analysis result (high or low), given that carcinoma presents higher

atypia values. The model has an undetected carcinoma rate of 9.3%, an undetected adenoma rate of

0.0% and an overdetection proportion of 27.1%.

The first DL application model was presented in 2017, by Korbar et al. [47], to automatically

classify colorectal polyps on H&E stained slides into five classes: normal, hyperplastic, sessile

serrated, traditional serrated adenoma, tubular adenoma and tubulovillous/villous adenoma. The 697
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H&E stained slides (annotated by a pathologist) were cropped into ROIs of 811×984 pixels (mean

size) and then divided into overlapping smaller patches. These patches were classified using the

ResNet-152 and the prediction of the slide was obtained as the most common colorectal polyp class

among all patches of the slide. However, if no more than five patches are identified with the most

common class, with a confidence higher than 70%, the slide is classified as normal. The proposed

system achieved 93.0% accuracy, 89.7% precision, 88.3% recall and 8.8% F1-score. Later, the

authors proposed a visualisation method [56], based on this approach, to identify highly-specific

ROIs for each type of colorectal polyps within a slide, using the Guided Grad-CAM method [57]

and a subset of data (176 H&E colorectal slides).

In 2020, several authors presented solutions for CRC diagnosis, with varying degrees of detail.

Iizuka et al. [48] proposed the combination of an Inception-v3 network with a recurrent neural

network (RNN) to classify H&E colorectal WSI into non-neoplastic, adenoma and adenocarcinoma.

Each slide was divided into patches of 512× 512 pixels (at 20X magnification, with a sliding

window of 256 pixels) and assigned to one of the three diagnostic classes. Then, all tiles are

aggregated using a RNN, trained to combine the features outputted by the CNN. The dataset

consists of subsets from two different institutions, summing 4536 WSIs. Moreover, the model

was also evaluated on a subset of 547 colon surgical resection cases from The Cancer Genome

Atlas (TCGA) repository [58], containing adenocarcinoma and normal samples (TCGA-COAD

collection). On the private dataset, the proposed approach measured AUCs of 0.962 and 0.992 for

colorectal adenocarcinomas and adenomas, respectively. On the public dataset, the model achieved

an 0.982 AUC for adenocarcinomas. It is noteworthy that the authors report that, since the samples

from the external subset are much larger than the biopsies used for training, the RNN aggregation

was replaced by a max-pooling aggregation. Meanwhile, Wei et al. [50] aimed to identify five

types of polyps in H&E stained colorectal slides: normal, tubular adenoma, tubulovillous or villous

adenoma, hyperplastic polyp, and sessile serrated adenoma. To train the model, the authors used

509 slides (with annotations of relevant areas by five specialised pathologists). For further testing,

they used an external set of 238 slides, obtained from different institutions. The model consists of

an ensemble of the five versions of ResNet (namely, networks with 34, 50, 101, and 152 layers) to

classify tiles of 224×224 pixels (at 40X magnification). Then, the patches are combined with a

hierarchical classifier to predict a slide diagnosis. Based on the predicted tile classes, the model first

classifies a polyp as adenomatous or serrated, by comparing the frequency of tiles classes (tubular,

tubulovillous, or villous vs. hyperplastic or sessile serrated). Adenomatous polyps with more than

30% tubulovillous or villous adenoma tiles are classified within this class and the remaining are

classified as tubular adenoma. Serrated polyps with more than 1.5% of sessile serrated tiles are

classified within this class and the remaining are classified as hyperplastic. The thresholds were set

with a grid search over the training set, reaching an accuracy of 93.5%, on the internal test set, and

87.0% on the external test set.

Also in 2020, two other authors proposed segmenting colorectal tissue simultaneously with the

diagnosis. Song et al. [49] presented an approach based on a modified DeepLab-v2 network on

640×640 pixel tiles, at a 10X magnification. The dataset consists of 411 annotated slides, labelled



20 Colorectal cancer insights

as colorectal adenomas or normal mucosa (which includes chronic inflammation), and a subset of

168 slides collected from two other institutions, to serve as an external test. The authors modified

the DeepLab-v2 network by introducing a skip layer that combines the upsampled lower layers with

the higher layers, to retain semantic details of the tiles. Then, the 15th largest pixel-level probability

is used for the slide-level prediction. In the inference phase, the slide is decomposed into tiles

of 2200×2200 pixels. The proposed approach achieved an AUC of 0.92 and when tested on the

independent dataset, an accuracy over 90%. In turn, the model of Xu et al. [51] was trained on a

set of 307 slides (normal and CRC), with tissue boundaries manually annotated by a pathologist,

achieving a mean accuracy of 99.9% for normal slides and 93.6% for cancer slides, and a mean

dice coefficient of 88.5%. For further testing, the model was also evaluated on an external set of 50

CRC slides and achieved a mean accuracy of 87.8% and a mean Dice coefficient of 87.2%. The

method uses the Inception-v3 architecture, pre-trained on the ImageNet dataset, to classify patches

of 768× 768 pixels, resized to 299× 299 pixels. The final tumour regions and slide diagnosis

are obtained by thresholding the tile predictions: tiles with tumour probability above 0.65 are

considered cancer.

In addition, in 2021, using the Inception-v3 architecture, Wang et al. [52, 53] developed a

framework to detect tumours which retrieves the final classification of a slide and also a map

of tumour regions, using 13,111 slides from 13 independent centres. From the tile classifier,

which distinguishes normal and cancer tiles, slide prediction is obtained with a tile-cluster-based

aggregation: a WSI is positive if several positive patches are topologically connected as a cluster,

e.g., four patches as a square, and negative otherwise. This approach was tested on several WSI

sets, achieving accuracies higher than 93%, an AUC higher than 0.94, sensitivities higher than 92%

and specificities higher than 88%. Marini et al. [54] proposed a multi-scale task multiple instance

learning (MuSTMIL) method to classify five colon-tissue findings: normal glands, hyperplastic

polyps, low-grade dysplasia, high-grade dysplasia and carcinomas. Using multiple scale branches,

in a multi-task network, the model combines features from several magnification levels of a slide

in a global prediction. Developed with more than 2,000 WSI, this method reached an ACC of

87.0% and a 0.893 F1-score, in the binary setup, and an ACC of 85.7% and 0.682 F1-score, in the

multi-class setup.

In 2022, Ho et al. [55] presented an algorithm that simultaneously segments glands, detects

tumour areas and sorts the slides into low-risk (benign, inflammation or reactive changes) and high-

risk (adenocarcinoma or dysplasia) categories. The authors proposed a Faster-RCNN architecture,

with a ResNet-101 backbone network, for glandular segmentation of tiles, followed by a gradient-

boosted decision tree for slide classification, using features such as the total area classified as

adenocarcinoma or dysplasia, and the average prediction certainty for these areas. The dataset

comprises 294 slides, combining samples of a private set and samples from the TCGA collection.

The model achieved an ACC of 79.3% with an AUC of 0.917, sensitivity of 97.4% and specificity

of 60.3%.

While some of the reported results are impressive and show high potential, there are still some

obvious shortcomings that need to be addressed. One of the issues is model evaluation: most of



2.3 Computational pathology on CRC 21

the papers analysed have not used any form of external evaluation on public benchmark datasets,

as can be seen by the dataset descriptions in Table 2.2. This validation is necessary to understand

and compare the performance of models that, otherwise, cannot be directly compared to each other

due to the use of distinct datasets. It also limits the study of the robustness of the model when it is

exposed to data from sources other than those used for training. On the other hand, as with any

DL problem, the size of the dataset is crucial. Although, as mentioned earlier, it is expensive to

collect the necessary amount of data to develop a robust model, it is noticeable that the reviewed

articles could greatly benefit from an increase in the volume of data since most of the works are

trained on only a few hundred slides. Describing and sharing how the data collection and annotation

processes were performed is also crucial to assess the quality of the dataset and the quality of

the annotations. For example, the number of annotators, their experience in the field, and how

their discrepancies were resolved. However, this description was not a common practice in the

articles reviewed. Moreover, comparing models becomes more complicated when one realises that

the number of classes used for the classification tasks is not standardised across published work.

Therefore, together with the difference in the kind of metrics presented, direct comparisons should

be made with caution.

2.3.2 CRC classification on tiles/crops

Despite the small number of published works on colorectal WSI diagnosis, there is a myriad of

other articles also working on CRC classification using information from smaller tissue regions,

that can be exploited as a basis for general diagnostic systems. Despite the different tasks, these

works that use image crops, or even small patches [59–63], can be leveraged for slide diagnosis,

in combination with aggregation methods that combine all the extracted information in a single

prediction.

As for WSI classification, there are also approaches for crop image classification based on

traditional computer vision methods or DL models, and even a combination of both. In 2017, Xu et

al. [64] proposed the combination of an Alexnet (pre-trained on ImageNet) as a feature extractor

and an SVM classifier to develop both a binary (normal vs. cancer) and a multiclass (CRC type)

classification approach for cropped images (variable size, 40X magnification) from CRC H&E

slides. The latter goal is to distinguish between 6 classes: normal, adenocarcinoma, mucinous

carcinoma, serrated carcinoma, papillary carcinoma cribriform adenocarcinoma. Each image is

divided into overlapping patches of 672×672 pixels (then resized to 224×224 pixels), from which

4096-dimensional feature vectors are extracted. For cancer detection, features are selected based

on the differences between positive and negative labels: the top 100 feature components (ranked

from the largest differences to the smallest) are kept. Then the final prediction is obtained with a

linear SVM (one-vs-rest classification for CRC type). The CRC detection model has an accuracy

of 98% and the CRC type classification model has an accuracy of 87.2%, trained on 717 image

crops. Already in 2019, Yang et al. [65] and Ribeiro et al. [66] proposed works based on colour and

geometric features, and classical ML methods, to classify CRC. With colour pictures (350×350

pixels, 20X magnification) from H&E stained colorectal tissue sections (labelled and marked by
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professional pathologists), Yang et al. [65] proposed a method based on sub-patch weight colour

histogram features, the RelicfF based forward selection algorithm and a Morlet wavelet kernel-based

least squares SVM classifier. The method was developed using a total of 180 images and obtained an

AUC and accuracy of 0.85 and 83.13%, respectively. Ribeiro et al. [66] associated multidimensional

fractal geometry, curvelet transforms and Haralick features and tested several classifiers on 151

cropped images (775×522 pixels, 20X magnification) from 16 H&E adenocarcinoma samples.

The best result, an AUC of 0.994, was achieved with multiscale and multidimensional percolation

features (from curvelet sub-images with scales 1 and 4), quantifications performed with multiscale

and multidimensional lacunarity (from input images and their curvelet sub-images with scale 1)

and a polynomial classifier.

Regarding DL models, there are also several proposed approaches for several CRC classification

tasks. In 2017, Haj-Hassan et al. [67] proposed a method based on multispectral images and a

custom CNN to predict 3 CRC types: benign hyperplasia, intraepithelial neoplasia and carcinoma.

From the H&E stained tissue samples of 30 patients, 16 multispectral images of 512×512 pixels

are acquired, in a wavelength range of 500-600nm. After a CRC tissue segmentation with an Active

Contour algorithm, images are cropped in smaller tiles of 60×60 pixels (with the same slide label)

and fed to a custom CNN (input size of 60×60×16), reaching an accuracy of 99.17%. In 2018,

Ponzio et al. [68] adapted a pre-trained VGG16 net for CRC classification into adenocarcinoma,

tubulovillous adenoma and healthy tissue. They used tissue subtype large ROIs, identified by a

skilled pathologist from 27 H&E stained slides of colorectal tissue from a public repository [69],

that were then cropped into 1089×1089 patches, at a magnification level of 40x. By freezing the

weights up to the most discriminative pooling layer (determined by t-SNE) and training only the

final layers of the network, the solution provided a classification accuracy over 90%. The system

was evaluated at two levels: the patch score (fraction of patches that were correctly classified) and

patient score (per-patient patch score, averaged over all cases), which reached 96.82% and 96.78%,

respectively. In 2019, Sena et al. [70] proposed a custom CNN to classify four stages of CRC

tissue development: normal mucosa, early pre-neoplastic lesion, adenoma and carcinoma. The

dataset consists of 393 images from H&E colorectal slides (20X magnification), cropped into nine

sub-images of 864×548 pixels. For further validation on significantly different images, the authors

also used the GLaS challenge dataset [71, 72], with 151 cropped images. Since both datasets differ

in resolution, the GLaS images were resized with bi-cubic interpolation and centrally cropped.

The proposed method obtained an overall accuracy of 95.3% and the external validation returned

an accuracy of 81.7%. Meanwhile, Zhou et al. [73] proposed a pipeline to classify colorectal

adenocarcinomas, based on the recent graph neural networks, converting each histopathological

image into a graph, with nucleus and cellular interactions being represented by nodes and edges,

respectively. The authors also propose a new graph convolution module, Adaptive GraphSage, to

combine multilevel features. With 139 images (4548×7520 pixels, 20x magnification), cropped

from WSI labelled as normal, low grade and high grade, the method achieved an accuracy of

97%. For the same classification task, in 2020, Shaban et al. [74] proposed a context-aware

convolution neural network to incorporate contextual information in the training phase. Firstly,
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tissue regions (1792×1792 pixels) are decomposed in local representations by a CNN (224×224

pixels input), and the final prediction is obtained by combining all contextual information with

a representation aggregation network, considering the spatial organisation of smaller tiles. This

method was developed on 439 images (≈ 5000×7300 pixels, 20X magnification) and achieved an

average accuracy of 99.28% and 95.70% for a binary and three-class setup, respectively.

2.4 Summary

Colorectal cancer (CRC) diagnosis is based on samples obtained from biopsies, assessed in

pathology laboratories. Due to population growth and ageing, as well as better screening programs,

the CRC incidence rate has been increasing, leading to a higher workload for pathologists. In

this sense, the application of AI for automatic CRC diagnosis, particularly on WSI, is of utmost

relevance, in order to assist professionals in case triage and case review.

Despite the ever-growing number of publications of ML methods applied to CAD systems,

there is a dearth of published work for the task of joint detection and classification of colorectal

lesions from WSI, lagging CRC behind pathologies such as breast cancer and prostate cancer.

Furthermore, a significant amount of the work developed does not use the entire WSI but instead

uses crops and regions of interest extracted from these images. While these latter works show

significant results, the applicability of such works in clinical practice is limited. Similarly, publicly

available datasets often consist of crops instead of the original image. Others include only abnormal

tissue, limiting the development of CRC diagnostic systems and the detection task.
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Collecting and labelling data for computational pathology problems is a lengthy and expensive

process. As seen in Chapter 2, research is often conducted on small datasets containing a high

granularity of annotations per sample. Despite the benefits of detailed annotations, researchers have

recently turned their attention to weakly-supervised approaches. These approaches, notwithstanding

the simplified annotation, can leverage larger datasets for learning. More importantly, weakly-

supervised learning techniques are less prone to bias in data collection. Performance is also

evaluated on a more extensive test set, and thus, the behaviour of the model in the real world can

be generalised much more accurately. In this chapter, we conduct a feasibility study on the use of

efficiently annotated datasets to drive the development of computer-aided diagnosis (CAD) systems

for colorectal cancer (CRC) from whole-slide images (WSI). We attempt to answer the question of

the required dimension of the dataset, as well as the extension of annotations, to enable the robust

learning of predictive models. We also analyse the advantage of using a loss function adapted to

the ordinal nature of the classes corresponding to the CRC scores.
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3.1 Methodology

Traditional supervised learning techniques would require all the tiles extracted from the original

image to be labelled. However, cancer grading (in clinical practice) aims to classify the WSI,

not individual tiles. Moreover, labelling the tiles represents a significant effort with regard to the

workload of the pathologists. Therefore, techniques such as multiple instance learning (MIL), have

been adapted to computational pathology problems [75–77]. MIL only requires slide-level labels

and the original supervised problem is converted to a weakly-supervised problem. The nature of

the problem allows the implementation of this technique knowing that, if a WSI is classified with

a label Y, no tile belongs to a more severe class than Y and at least one tile belongs to the label

Y. Therefore, using the MIL concept, we propose a workflow (Figure 3.1) based on the work of

Campanella et al. [76] with several adaptations:

a) Ordinal labels: First, the problem at hand has a multiclass formulation, whereas the original

had only two labels. In order to contextualise the premises of the MIL method and the clinical

information, the labels must not be seen as independent and their relation must be modelled.

For instance, normal tissue is closer to low-grade lesions than to high-grade dysplasias. Thus,

there is an order regarding labels.

b) Removal of recurrent aggregation: The original approach leveraged a Recurrent Neural

Network (RNN) to aggregate predictions of individual tiles into a final prediction. All

the tests conducted for the feasibility results did not show any benefit of having this RNN

aggregation, in fact, the performance degraded. Thus, it was removed from the pipeline.

c) Tile ranking using the expected value: Using a single tile for the prediction requires a ranking

rule in order to select the most representative of potentially thousands of tiles. Since the

problem is non-binary, the original rule is not applicable [76]. Therefore, to create a ranking

of tiles that are meaningful for the final prediction, the backbone network is used to compute

the outputs of each tile and the expected value is then computed from these outputs:

tile_score =
n_classes

∑
i=1

xi × pi

with n_classes the number of classes, xi the class, pi the correspondent probability;

d) Loss function: The problem includes ordinal labels, so the minimisation of the cross-entropy

fails to fully capture the model’s behaviour. As mentioned before, the distance between labels

is different and cross-entropy treats them as if they are equally distant. Thus, in an attempt to

increase the performance of the initial baseline experiments the model is now optimised to

minimise an approximation to the Quadratic Weighted Kappa (QWK) [78].
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Figure 3.1: Proposed workflow for colorectal cancer diagnosis on whole-slide images.

3.1.1 Training details

The setup of the experiments was similar across datasets: ResNet-34 as the backbone, batch-size

of 32, the Adaptive Moment Estimation (Adam) algorithm with a learning rate of 1× 10-4 as

the optimiser, tiles of 512× 512 pixels that include 100% of tissue and mixed-precision from

the Pytorch available package. Only one tile was used for predicting the label of the slide (MIL

formulation), thus the training set was only regarding the selected tile. As for hardware, all the

experiments were conducted using an Nvidia Tesla V100 (32 GB) GPU.

3.2 Datasets

This feasibility study was conducted on two datasets: the first contains colorectal haematoxylin &

eosin (H&E) stained slides (CRS1k dataset), whereas the second includes prostate cancer (PCa)

H&E-stained biopsy slides (PANDA dataset). As mentioned in section 2.3.1, there is a shortage

of large public datasets containing colorectal WSIs and most of the existing ones are based on

cropped regions instead of entire slides. Hence, we relied on a PCa dataset that, while not fully

transferring to colorectal use case, is one of the largest WSI datasets publicly available. This amount

of data allowed us to study the data requirements of a weakly supervised approach and how the

performance evolved with the growth of the dataset.
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3.2.1 CRS1k dataset

The CRS1k dataset contains 1,133 colorectal biopsy and polypectomy slides and is the result of

our ongoing efforts to contribute to CRC diagnosis with a reference dataset. We aim to detect

high-grade lesions with high sensitivity. High-grade lesions encompass conventional adenomas

with high-grade dysplasia (including intra-mucosal carcinomas) and invasive adenocarcinomas. In

addition, we also intend to identify low-grade lesions (corresponding to conventional adenomas

with low-grade dysplasia). Accordingly, we created three diagnostic categories for the algorithm,

labelled as non-neoplastic (NNeo), low-grade (LG) and high-grade (HG) lesions (Table 3.1). In

the NNeo category, cases with suspicion/known history of inflammatory bowel disease/infection

were omitted. We selected conventional adenomas as they were the largest group on daily routine

(serrated lesions, and other polyp types, were omitted).

Table 3.1: CRS1k dataset class definition.

Algorithm data classes Pathological diagnosis

Non-neoplastic Normal CR mucosa, non-specific inflammation, hyperplasia
Low-grade lesion Low-grade conventional adenoma
High-grade lesion High-grade conventional adenoma and invasive adenocarcinoma

All cases were retrieved from the data archive of IMP Diagnostics laboratory, Portugal, and were

digitised by 2 Leica GT450 WSI scanners, and evaluated by one of two pathologists (Figure 3.2a).

Data collection and usage were performed in accordance with national legal and ethical standards

applicable to this type of data. Since the study is retrospectively designed, no protected health

information was used and patient informed consent is exempted from being requested.

Diagnostics were made using a medical grade monitor LG 27HJ712C-W and Aperio eSlide

Manager software. When reviewing the cases, most diagnoses were coincident with the initial

pathology report and no further assessment was made. In case of difference, the case was rechecked

(a) (b)

Figure 3.2: Example of a colorectal WSI (a), with manual segmentations overlayed (b). Tissue
regions are annotated as non-neoplastic (green), low-grade (blue) or high-grade lesions (yellow).
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and decided between the two pathologists. A small number of cases (n=100) were further annotated

with region marks (Figure 3.2b) by one of the pathologists and then rechecked by the other, using

the Sedeen Viewer software [79]. Corrections were made when considered necessary by both.

For complex cases, or when an agreement could not be reached, both the label and/or annotation

were reevaluated by a third pathologist. Case classification followed the criteria previously described

in section 2.2.1. Accordingly, cases with only minimal high-grade dysplasia areas (only one or two

glands), or with areas of florid high-grade cytological features but without associated worrisome

architecture, were kept in the low-grade dysplasia class, as well as cases with cytological high-grade

dysplasia only seen on the surface. It is worth noting that some cases may be more difficult to

grade and have to be decided on a case-by-case basis, preferentially by consensus. Additionally, as

recommended by the World Health Organization (WHO), intramucosal carcinomas were included

in the high-grade lesions set [39, 80].

Regarding the distribution of slide labels, while the annotated samples are considerably imbal-

anced, as seen in Figure 3.3(a) when combined with the non-annotated samples, the distribution

of the labels is significantly more even. Figure 3.3(b) shows this final distribution and it is closer

to what is seen in clinical practice. Moreover, it was important to fully annotate cases that are

especially difficult or high-grade, so the model can learn more about these critical cases. The

CRS1k dataset was used not only to develop the proposed methodology but also to evaluate the

relevance of annotations in a model pretraining step: can a small set of annotated images leverage

the overall performance of the weakly supervised model?

(a) Annotated samples (b) All samples

Figure 3.3: Slide classes distribution on CRS1k dataset.

3.2.2 PANDA dataset

Besides the influence of the level of annotations, we also aimed to evaluate the proposed classifica-

tion methodology on a larger dataset, also with a multiclass formulation, to investigate the impact

of the dataset size on the performance of the algorithm. In this sense, we used 9,825 PCa biopsy

slides from the dataset of the Prostate cANcer graDe Assessment (PANDA) challenge [81]. The
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(a)

(b)

Figure 3.4: Example of WSI from the PANDA dataset, with manual segmentations overlayed:
(a) sample from the Radboud UMC, with normal tissue in green, and tumour tissue in yellow and
orange, accordingly its Gleason score; (b) sample from the Karolinska Institutet, with normal and
tumour tissue in green and red, respectively.

available full training set consists of 10,616 WSI of digitized H&E stained PCa biopsies (we

excluded cases with some type of error) obtained from two centres: the Radboud University Medical

Centre (Figure 3.4a) and the Karolinska Institutet (Figure 3.4b), and includes both labelling and

tissue segmentation. Each image is labelled with the corresponding ISUP grade and includes tissue

annotation, differentiating tumour areas from normal tissue. The International Society of Urological

Pathology (ISUP) grading system is the current score to grade PCa, which is based on the modified

Gleason system (a score based on glandular architecture within the tumour), providing accurate

stratification of PCa [82].

The PANDA dataset contains six different labels, corresponding to the five ISUP grades and

the normal label, whereas the CRS1k dataset has only three different labels. Histopathological

slides are quite different for different types of cancer, for instance, the quantity of tissue varies

significantly. The images require some preprocessing that creates the tiles from the WSI. Such

processing removes the background, and thus, tissue variations deeply affect the number of tiles on

one slide. Table 3.2 displays an illustrative example of this, by comparing the number of tiles and

the mean number of tiles per slide included in both datasets.

Table 3.2: Comparison between the number of tiles extracted from the slides of the PANDA and
the CRS1k datasets.

Dataset # Slides # Tiles Mean # tiles per slide

PANDA 9,825 253,291 25.78
CRS1k all 1,133 1,322,596 1,167.34
CRS1k annotated 100 211,235 2,112.35

The average number of tiles per slide is approximately 82x and 45x higher, respectively on

the CRS1k annotated subset and on the complete dataset, when compared to the PANDA dataset.
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Because of this variation in tissue proportion, despite having 8.6x more slides, the PANDA dataset

still has around 5x fewer tiles.

3.3 Experimental results & discussion

In deep learning problems, it is not always trivial to determine the required dataset size to achieve

the expected performance. Usually, it is expected that increasing the size of the dataset increases the

model performance. However, this is not always true. Hence, to fully understand the impact of the

dataset size in the computational pathology domain, the developed approach was trained on several

subsets of the original PANDA training set with different sizes: 80, 160, 500, 1000, 2500, 5000

and 8348 (complete training set). For a fair comparison, all the experiments were evaluated on the

same test set, which included 1477 slides (15% of the total dataset) independent from the training

set. As can be seen in Table 3.3, the model is able to leverage more data in order to achieve better

performance. Moreover, in line with these results, Campanella et al. [76] stated that for the MIL

approach to work properly, the dataset must contain at least 10,000 samples. In our experiments,

the performance with 5000 slides was already close to the best performance.

Table 3.3: Evolution of the model performance when trained on subsets of PANDA dataset with
different sizes, keeping the test set size constant (n=1,477).

# Slides # Tiles QWK score Accuracy

80 1,919 0.497 32.36%
160 3,851 0.586 37.71%
500 38,175 0.628 41.28%

1,000 25,757 0.692 47.66%
2,500 64,697 0.738 50.03%
5,000 129,734 0.771 58.43%
8,348 215,116 0.789 59.40%

To further infer the generalisation capability, an extra model was trained on 80 slides and evalu-

ated on 20 slides randomly sampled from the 1477 test set. As seen in Table 3.4, as expected, when

the size of the test set increases, the performance rapidly degrades, nursing the concerns and require-

ments for larger datasets. It is also worth noting that the performance of the model is considered

poor in terms of accuracy scores. The QWK, on the other hand, records reasonable values. This

Table 3.4: Performance comparison of the model trained on a subset of PANDA dataset, when
evaluated on test sets with different sizes.

Dataset # Train slides # Test slides # Train tiles # Test tiles QWK score

PANDA 80 1,477 1,919 38,175 0.497
PANDA 80 20 1,919 579 0.591
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difference in performance means that, while the model misclassifies about 40% of the slides, it

classifies them with neighbour classes of the ground truth. One possible reason for this could be

the noise present in the labels of this specific dataset.

The third set of experiments explores the potential to leverage the annotations of a subset of

data in order to improve the performance of the overall MIL method. Table 3.5 shows the results of

the best epoch of each of the experiments.

Table 3.5: Performance of the model on the different experiments on the CRS1k dataset.

Dataset pretrain QWK Accuracy Convergence Time (Epoch)

CRS1k Annotated (n=100) No 0.583 75.00% 6.5 hours (13)
CRS1k All (n=1,133) No 0.795 84.17% 2 days and 19 hours (27)
CRS1k All (n=1,133) Yes 0.863 88.42% 4 days (40)

There are notable performance gains in both the accuracy and the QWK score as the number

of training samples increases. However, perhaps the most exciting performance gain is related

to the pretraining of the backbone network on the 100 annotated samples for only two epochs

before the start of the MIL training. This experiment is able to outperform the best epoch of the

experiment without pretraining in only 7 epochs, in other words, 12 hours of training, with 84.94%

accuracy and 0.803 QWK score. Moreover, these values kept increasing until the last training

epoch, reaching an accuracy and QWK score of 88.42% and 0.863, respectively. The final results

presented in Table 3.5 can be extended with sensitivity to lesions of 93.33% and 95.74% for the

last two entries respectively. The training set comprises 874 samples (100 annotated and 774

non-annotated), whereas the test set has 259 WSI.

The results shown in Figures 3.5a and 3.5b, respectively for the QWK and the accuracy, are

representative of the gains that both the number of samples and the use of annotations bring to the
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Figure 3.5: Performance evaluated on CRS1k dataset.
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model. gains that both the number of samples and the use of annotations bring to the model.

Moreover, the use of annotations appears not only to speed up convergence at high values but also

to increase the model’s ability to learn at further epochs.

The finding in these feasibility results supports the need for larger datasets. Not only that, but it

also increases the confidence in the performance of weakly-supervised learning techniques, espe-

cially if it is possible to include at some point some supervised training to propel the performance

even more. It is expected that these novel techniques and larger datasets converge to models that

are closer to being deployed for clinical practice.

3.4 Summary

As studied in this chapter, increasing the number of WSI in the training data leads to an increase in

performance, as does detailed annotation of, at least, part of the dataset. Therefore, the first and

perhaps most crucial step for the further development of computer-aided diagnosis (CAD) systems

for CRC is to establish a large and meaningful dataset.

Nonetheless, the construction of larger datasets with extensive annotations is not an easy and

expeditious task. Hence, there is still a plethora of techniques to be explored with weakly labelled

datasets. One of these tasks is known as multiple instance learning (MIL) and while it has been

employed several times on these types of problems, it can still be improved to achieve more accurate

results. As shown in Section 3.3, the performance of MIL systems is greatly improved with a

pretraining on the 10% of the dataset that is annotated.

Since the main goal of deep learning (DL) in computational pathology is to develop a solution

that can be deployed in a clinical environment, it is important to develop it in a similar fashion to the

clinical practice, in other words, to handle the same type of data given to pathologists, WSI. In that

sense, this work is considerably more in line with the end goal of CAD systems for computational

pathology: our proposal can be directly applied to a lab workflow. However, in order for these

approaches to be used in practice, it is important that researchers develop techniques to inform

pathologists about the spatial location that was most responsible for the diagnosis and to explain

the reasons for the prediction. Interpretability and explainability have been explored in medical

applications of DL [83], and so they should be present in Computational Pathology use cases [84],

such as CRC diagnosis. The ultimate goal is to create transparent systems that medical professionals

can trust and rely on. The work presented in the next chapter tries to solve this requisite.
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Chapter 4

Semi-supervised & interpretable
approach for CRC grading

Author Contributions
The research work described in this chapter was conducted in collaboration with Pedro C. Neto and the IMP
Diagnostics team, under the clinical supervision of Isabel M. Pinto, and the technical supervision of Jaime S.
Cardoso. The author of this thesis contributed to this work on problem conceptualisation, data curation, the
preparation of experiments, the results discussion, and publication writing. Some parts of the chapter were
originally published in, or adapted from:
• P.C. Neto*, S.P. Oliveira*, D. Montezuma*, J. Fraga, L. Ribeiro, S. Gonçalves, I.M. Pinto and J.S. Cardoso.

iMIL4PATH: A Semi-Supervised Interpretable Approach for Colorectal Whole-Slide Images. Cancers,
14(10):2489, 2022

*Shared co-first authorship

The main goal of this work was to develop a system that is one step closer to being used by

pathologists in their daily routine, which includes the following contributions: (1) an improved

method that combines weakly and supervised learning methods to construct a novel system to

diagnose colorectal cancer (CRC) from digitised Haematoxylin-Eosin (H&E) stained slides, with

high ACC and sensitivity; (2) a thorough comparison of several aggregation methods to increase the

number of tiles used for predictions, which can reduce the number of false positives; (3) extensive

experiments on an extended version of the publicly available CRS1k dataset; (4) a study of the

model’s interpretability and capability to self-explain the diagnosis areas through the reconstruction

of the slide with individual tile predictions without requiring added training. This latter contribution

can be especially useful to guide pathologists’ attention towards the most relevant tissue areas within

each WSI; and (5) evaluation of domain generalisation on two public colorectal WSI datasets.

35
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4.1 Problem definition

Automated diagnosis of CRC histological samples requires the use of images with large dimensions.

In addition, the labelling of these images is difficult, expensive, and tedious. Therefore, the

availability of WSIs is limited, and, when available, they often lack meaningful labelling: while

slide-level diagnoses are generally available, detailed spatial annotations are almost always lacking.

A prototypical example is the CRS1k dataset, presented in Chapter 3, containing 1133 colorectal

H&E samples with slide-level diagnoses.

Thus, following previous work on CRC diagnosis, and on automatic diagnostic systems in

general, we assumed a semi-supervised learning procedure. A slide S can be viewed as a set of

tiles Ts,n, where s is the index of the slide and n ∈ {1, · · · ,ns} is the tile number. We assumed that

there were individual labels Cs,n ∈ {C(1), · · · ,C(K)} for the tiles within the slide. The classes C(k)

were considered ordered and correspond to the different diagnostic grades. For a strongly annotated

slide, each corresponding tile label Cs,n is known. In a weakly annotated slide, there is no access to

those labels and they remain unknown during training. A weakly annotated slide has only a single

label for the entire set (bag) of tiles, see Figure 4.1.

Figure 4.1: Labelling scheme: weakly annotated slides (above) have only a global label, from the
pathology report, whereas a strongly annotated slide (below) has labels for each individual tile,
retrieved directly from the pathologists’ spatial annotations.

Finally, we assumed that the slide label Cs is the worst-case of the tile labels:

Cs = max
n

{Cs,n}.

If there is one tile in the set of tiles extracted from a slide that is classified as high-grade

dysplasia, then the slide label will be the same. Second, if there is no dysplasia in any of the tiles,

then the slide label is non-neoplastic. This learning setting corresponds to a simple generalisation

of multiple-instance learning (MIL), from the binary problem to the ordinal classification problem.
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4.2 Methodology

4.2.1 Data pre-processing

The H&E slide pre-processing includes an automatic tissue segmentation with Otsu’s threshold-

ing [85] on the saturation (S) channel of the HSV colour space, obtaining the tissue regions clearly

separated from the whitish background. This step, performed on the 32× downsampled slide,

returned the mask used for tile extraction. Tiles with a size of 512×512 pixels (Figure 4.2) were

then extracted from the slide with original dimensions (without downsampling) at the maximum

magnification (40×), provided they were completely within Otsu’s mask.

The tile size was chosen by empirical experiments, which showed that 512×512 is the best

trade-off between memory and performance. Larger sizes represent more context and tissue per

tile, at the expense of memory and computation time. Using tiles with a full area of tissue reduces

the number of instances by not including the tissue at the edges, which drastically decreases the

computational cost, without hurting the performance of the model. Since the original size of each

WSI and the amount of tissue per slide varies greatly, the number of tiles extracted also varies a lot.

(a) (b) (c)

Figure 4.2: Examples of tiles with 512×512 pixels (40× magnification), representing each class:
non-neoplastic (a), low-grade dysplasia (b) and high-grade dysplasia (c).

4.2.2 Model architecture

In Chapter 3, we presented an approach that has already introduced some modifications to the MIL

method proposed by Campanella et al. [76]. Here, we further extended those modifications and

adjusted them to better fit the requirements of an automatic CRC diagnosis system. In Figure 4.3,

the architecture of our system is introduced, which is mainly composed of a supervised pre-training

phase, to leverage the samples that include annotations (≈9% in the adopted dataset), a weakly

supervised training phase, where all the dataset is used, and a final stage with feature extraction and

training of an aggregation method. While supervised learning requires extensive use of annotations,

we used an approach that merges weakly and supervised learning, needing less than one annotated

per ten non-annotated samples, while performing on par with the state-of-the-art methods.
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Figure 4.3: Proposed workflow for colorectal cancer diagnosis on whole-slide images, as a three-
step method: (1) supervised tile classifier, using the annotated slides set; (2) weakly supervised tile
classifier (initialised with the supervised weights), selecting the most relevant tiles by ranking by
the expected values; and (3) whole-slide prediction by aggregating the features (obtained with the
previous CNN model) extracted from the most relevant tiles.

(1) Supervised pre-training

The supervised training phase leverages the annotations of all tiles in the strongly annotated WSIs

to train a ResNet-34 [86], which classifies into the three diagnostic classes by minimising a loss

function based on the quadratic weighted kappa (QWK). The QWK loss is appropriate for ordinal

data because it weights misclassifications differently, according to the equation:

κ = 1−
∑

n
i, j=1 wi jxi j

∑
n
i, j=1 wi jmi j

(4.1)

where K is the number of classes, wi j belongs to the weight matrix, xi j belongs to the observed

matrix and mi j are elements in the expected matrices. The n×n matrix of weights w is computed

based on the difference between the actual and predicted class, as follows:

wi, j =
(i− j)2

(n−1)2 (4.2)

As shown in Chapter 3, pre-training on a small set of data with supervised learning leads to

faster convergence and also better results on all metrics.

During our studies, we found that the approach presented in Chapter 3, used as the baseline,

could be improved with increased pre-training. Compared to the weakly supervised training phase,

the supervised training was significantly faster to complete an epoch. In addition, thus, with a trivial

computational cost, it was possible to increase the number of pre-training epochs from two to five.

This change positively impacted the algorithm’s performance on the test set.
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(2) Weakly-supervised training

The weakly-supervised training phase uses all the available training slides and only slide-level

labels to complete the training of the deep network. The model is used to infer all tiles classes

and then, based on those predictions, the tiles are ranked. We followed the approach of Chapter 3,

which performed a tile ranking based on the expected value of the predictions.

For tile Ts,n, the expected value of the score is defined as

E(Ĉs,n) =
K

∑
i=1

i× p
(

Ĉs,n =C(i)
)

(4.3)

where Ĉs,n is a random variable on the set of possible class labels {C(1), · · · ,C(K)} and

p
(
Ĉs,n =C(i)

)
are the K output values of the neural network.

Despite ranking all tiles, only the worst tile (from a clinical point of view), i.e., the one with

the highest expected value, was used to optimise the network weights. From the perspective of

MIL, this corresponds to an aggregation function based on the maximum of the observations of

the bag. This can slow down the training and even make it more unstable, especially in the first

epochs, when the tile predictions are still very noisy. Therefore, instead of using only the tile with

the highest expected value, we considered the generalisation of max function, topL(.), which keeps

the first L tiles with the highest score.

By changing the number of tiles used to optimise the network, we also increased the variability

and possible changes between epochs. For example, it is more likely that none of the selected tiles

will change if only one is selected. However, by selecting L > 1, we increased the probability that

the tiles will change in successive epochs while maintaining the stability of the training. Similar to

the previous change, this one also resulted in a more robust model than the baseline.

After the model’s performance with the one tile MIL aggregation (L = 1), and also after an

in-depth analysis with pathologists, we decided that the WSI on the adopted dataset contained, on

average, enough information to use at least five tiles. The definition of sufficient information was

determined by the number of tiles that contained information related to the slide diagnosis. For

instance, if a WSI label was from a high-grade dysplasia, only tiles with information of a possible

high-grade dysplasia were considered to be useful, and, thus, tiles with only normal tissue should

not be used to optimise the network weights. The value of L was then set to L = 5, since this value

represents a significant increase from L = 1 and it does not use (in the majority of the slides) tiles

with a potentially distinct diagnosis from the slide diagnosis.

There is growing concern regarding semi-supervised methods’ overconfident behaviour. There

have also been works that aimed at addressing this problem on other tasks through network

calibration [87]. However, in this specific scenario, it is believed that an over-confident model in

severe cases leads to fewer false negatives and higher sensitivity. In addition, thus, it is not seen as

a potential problem of the model. On the other hand, the proposed aggregation approaches in the

following section show properties that mitigate the risk of overconfidence.
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(3) Feature extraction and aggregation

Regarding the max-pooling aggregation on multiple-instance learning approaches, one can argue

about its robustness, such as the discussion presented, for example, by Campanella et al. [76], since

it is a biased aggregation towards positive labels, and one small change can impact the entire tile

classification. Hence, we studied the incorporation of shallow aggregation structures into our model

to improve the results given by max-pooling.

It was found that the use of only one tile leads to a bias of the network towards more aggressive

predictions. For this reason, we followed a strategy that has been adopted in other domains: the

CNN was trained end-to-end as a classification model (using a combination of supervised pre-

training and weakly supervised learning) and, after training, the fully-connected layer was removed.

The network then outputs a feature vector for each tile, which were aggregated and used to train a

supervised method at the slide level to improve the classification capabilities of the system. For

this problem, we chose to use La feature vectors, corresponding to the La tiles with the highest

expected value for the score (Equation (4.3)). In our experimental study, La was empirically set to

7, representing a good trade-off between additional information and the introduction of noise.

To compare different classifiers, we selected six aggregation models to test within the proposed

framework:

• A support-vector machine (SVM) with a radial basis function kernel and a C of 1.0;

• A K-nearest neighbour (KNN) with a K equal to 5;

• A random forest (RF) with a max. depth of 4 and the Gini criterion;

• AdaBoost and XGBoost with 3000 and 5000 estimators, respectively;

• Two distinct multi-layer perceptrons (MLP) with two layers; the first MLP with layers of 75

and 5 nodes - MLP(75;5) - and a second one with layers of 300 and 50 nodes - MLP(300;50).

Besides these individual models, we also combined the previous ones into voting schemes,

following a soft voting technique based on the probabilities of each model: SVM and KNN; and

SVM, RF and KNN.

4.2.3 Interpretability assessment

Nowadays, deep learning models are becoming more complex and opaque. This is alarming,

especially when we look at the potential applications of these models in the medical domain. If

they are designed to work all by themselves, we need to ensure they are completely transparent.

In addition, if they are to be used as a tool to help pathologists make a particular diagnosis and

improve their confidence, then they must at least direct their focus to the areas relevant to the

diagnosis. It is necessary to understand the behaviour of the model to extend the validity of the

typical analysis supported by metrics such as ACC, QWK and sensitivity.
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Therefore, a method was developed to generate visual explanations of model predictions. This

method was constructed with the following ideas in mind:

(a) for large WSI images, it is helpful to direct the pathologist to specific areas of high relevance;

(b) since the model was not trained on tile ACC, it is sufficient if it is able to highlight a subset

of the relevant tiles in a given area of interest;

(c) and since, for the slide prediction, the model requires the processing of all tiles, creating a

map of tile predictions does not require additional computational cost or idle time for the

pathologist.

Given these ideas, the proposed method leverages the evaluation of the MIL method, which

processes every tile in the WSI. Even if the tile is not selected for aggregation, it will be processed

by the backbone network, which results in a tile-score prediction (c). These tile-level predictions

are converted into colours based on the result of the Argmax function applied to their scores.

Afterwards, these colours can be spatially allocated based on a remapping strategy from the tile

at the original slide magnification to a 32× reduced WSI (a). In addition, while some of the

predictions might be misclassified, the entire reconstruction of the WSI shall be sufficient to redirect

the attention of pathologists towards the areas of interest (b).

4.2.4 Training details

We trained the convolutional neural network using Pytorch with the Adaptive Moment Estimation

(Adam) optimiser, a learning rate of 6×10−6, a weight decay of 3×10−4 and a batch size of 32,

for both the strongly and weakly supervised training steps. For the inference step in the weakly

supervised approach, we used a batch size of 256 and the network was set to evaluation mode. The

method’s performance was evaluated at the end of each epoch to select the best model based on

the QWK. The training was conducted on a single Nvidia Tesla V100 (32 GB) GPU for 5 strongly

supervised epochs and 30 weakly supervised epochs.

Seven feature vectors from the worst tiles were concatenated to train the aggregation methods.

This led to a feature vector of size 3584. Afterwards, these feature vectors were used as input to

train the aggregators developed with the help of the scikit-Learn library. In addition to this, the

MLP aggregator required additional training parameters. It was optimised with stochastic gradient

descent, mini-batches of 32 samples and an initial learning rate of 10−3.

4.3 Datasets

4.3.1 CRS1k & CRS4k datasets

This work was developed with the CRS1k dataset, described in Chapter 3, and with an extended

version (CRS4k) that includes approximately 4× more samples (4433 colorectal H&E slides), of

which a subset (n = 400) is also annotated according to the guidelines followed on Chapter 3 [88].
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The CRS1k dataset was used for the selection and comparison of aggregation methods. The CRS4k

was used to create a more robust test set and a larger training set to train the methods previously

selected. Table 4.1 summarises the class distribution of annotated and non-annotated data, including

the number of tiles obtained after the pre-processing described in Section 4.2.1.

Table 4.1: Colorectal dataset summary, with the number of slides (annotated samples are detailed in
parenthesis) and tiles distributed by class: non-neoplastic (NNeo), low-grade (LG) and high-grade
(HG) lesions.

NNeo LG HG Total

#slides 300 (6) 552 (35) 281 (59) 1133 (100)
CRS1k dataset # annotated tiles 49,640 77,946 83,649 211,235

# non-annotated tiles - - - 1,111,361

#slides 663 (12) 2394 (207) 1376 (181) 4433 (400)
CRS4k dataset # annotated tiles 145,898 196,116 163,603 505,617

# non-annotated tiles - - - 5,265,362

The CRS4k dataset represented an increase in the approximate average number of non-annotated

tiles per slide from 1075 to 1305. However, the approximate average number of tiles per annotated

slide decreased from 2112 to 1264. This might represent a tougher task to solve on this dataset.

4.3.2 TCGA & PAIP datasets

Two external datasets were also included for a domain generalisation evaluation. The first is

composed of samples of the TCGA-COAD [89] and TCGA-READ [90] collections from The

Cancer Imaging Archive [91], containing mostly surgical resection samples (Figure 4.4a), excluding

slides with pen markers, large air bubbles over tissue, tissue folds and other artefacts in large areas

of the slide. We ended up with 232 samples reviewed and validated by the pathologist team, from

which 230 of them were diagnosed as high-grade lesions, one as a low-grade lesion and one as non-

(a) (b)

Figure 4.4: Example of slides from the TCGA (a) and the PAIP (b) datasets.
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neoplastic. The second external validation set is composed of 100 H&E slides from the Pathol-

ogy AI Platform [92] colorectal cohort, which includes all the cases with more superficial sampling

of the lesion (Figure 4.4b), to better compare with our CRS4k dataset. All samples were also

reviewed and validated as high-grade lesions by the pathologists team.

4.4 Experimental results & discussion

4.4.1 CRS1k dataset evaluation

We evaluated our approach with the MIL-aggregation (max-pooling) and with eight different types

of aggregators, as seen in Table 4.2. Approaches with tile aggregation at inference are, in general,

better than the baseline method for CRC diagnosis from WSI. From those, the MLP aggregator

using seven feature vectors outperformed the baseline and all the other aggregation schemes. Other

approaches with aggregation showed overall good results, but are not on par with the MLP approach.

In addition, the MLP has an increased specificity (by reducing the number of false positives) while

avoiding a significant degradation of the sensitivity. The SVM and the KNN have the best results

from the remaining approaches, with the KNN achieving the same specificity as MLP. Finally, the

two voting approaches show notable improvements over the stand-alone aggregation methods, with

the combination of SVM and KNN beating all the previous approaches on nearly every metric and

achieving the same specificity of the MLP.

Table 4.2: Comparison of feature aggregation methods against the approach of Chapter 3, on the
same test set. Both the ACC and the QWK score were computed for a three-classes problem,
whereas the sensitivity and the specificity were computed for a binary problem by considering the
LG and HG classes as a unique class.

Method
Annotated
Samples

Training
Tiles (L)

Aggregation
Tiles (La)

QWK ACC Sensitivity Specificity

Model of Chapter 3 100 1 1 0.863 88.42% 0.957 -

Supervised baseline 100 - 1 0.027 29.73% 0.449 0.796
Max-pooling 100 5 1 0.881 91.12% 0.990 0.852

MLP (75;5) 0.906 91.89% 0.980 0.981
SVM 0.887 90.35% 0.971 0.944
KNN 0.890 90.35% 0.971 0.981
RF 0.878 89.57% 0.966 0.963
AdaBoost 0.862 88.03% 0.961 0.907
XGBoost

100 5 7

0.879 89.58% 0.961 0.963

SVM + KNN 100 5 7 0.898 91.12% 0.971 0.981
SVM + RF + KNN 100 5 7 0.893 90.73% 0.971 0.981

In Table 4.3 we can see the confusion matrix for the MLP (75;5), which was the best-performing

method. It is worth noting that MLP (75;5) did not fail any prediction by more than one consecutive

class (for instance, predicting HG as NNeo or vice-versa). This ensures that HG lesions are at

least classified as LG or HG, which can be seen as a desired feature of the model. When analysed
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Table 4.3: Confusion matrix of the MLP (75;5) in the multiclass setup, using the CRS1k test set
(259 samples), with non-neoplastic (NNeo), low-grade (LG) and high-grade (HG) classes.

Actual class
NNeo LG HG

NNeo 53 4 0

LG 1 137 14

Pr
ed

ic
te

d
HG 0 2 48

as a binary classification problem, it is possible to observe that only 5 samples out of 259 are

misclassified. This means that the proposed model shows a binary ACC of 98.1%.

We also plotted the receiver operating characteristic (ROC) curve of the baseline and the best

aggregation method. It was intended to verify not only their area under the curve (AUC), but

the performance of the model per class. Once more, as seen in Figure 4.5, the MLP method

outperformed the other approach in almost every class. Moreover, as expected, it is easier to

distinguish non-neoplastic cases from the rest, than to decide between low- and high-grade lesions.

(a) Max-pooling (b) MLP (75;5)

Figure 4.5: ROC curves for max-pooling and MLP (75;5) aggregator.

4.4.2 CRS4k dataset evaluation

We aimed to understand the relevance of adding additional annotated and non-annotated data to

the performance of the algorithm. Hence, the results in Table 4.4 show the performance of the

model with the CRS1k dataset, with increased annotated samples and with an increased number of

non-annotated samples. In addition, we further introduced another version of the MLP aggregator,

which comprises different layer dimensions, to test if the increased number of samples required

more complex models. Surprisingly, the results did not evolve as expected, since the performance

was negatively affected by the increase in the size of the dataset. This is likely caused by the
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Table 4.4: Model performance evaluation with increasing training sets and/or annotated samples
(in parenthesis). Both the ACC and the QWK score were computed for a three-classes problem,
whereas the sensitivity and the specificity were computed for a binary classification problem by
considering the LG and HG classes as one unique class.

Method
Training
Samples

Test
Samples

Aggregation
Tiles (La)

QWK Score ACC Sensitivity Specificity

Max-pooling 1 0.881 91.12% 0.990 0.852

MLP (75;5) 7 0.906 91.89% 0.980 0.981
MLP (300;50)

874 (100) 259

7 0.885 91.12% 0.966 0.981

Max-pooling 1 0.874 91.12% 0.985 0.907

MLP (75;5) 7 0.838 86.49% 0.946 0.926

MLP (300;50)

1174 (400) 259

7 0.850 87.26% 0.941 0.944

Max-pooling 1 0.834 89.96% 0.980 0.870

MLP (75;5) 7 0.810 83.78% 0.922 0.889

MLP (300;50)

4174 (400) 259

7 0.816 83.01% 0.927 0.926

Max-pooling 1 0.884 89.89% 0.992 0.815

MLP (75;5) 7 0.871 88.89% 0.982 0.839

MLP (300;50)

3424 (400) 1009

7 0.888 90.19% 0.988 0.857

overfitting of the aggregation method to the training data, which leads to a poor generalisation

capability on test data.

In an attempt to fully understand the reason behind the performance drop, we created new

training and test sets, with the latter being roughly 3.89 times larger than its previous version. The

results of this new experiment are presented in the last three rows of Table 4.4. The improvements

shown by training and evaluating on these larger training and test sets indicate that the smaller test

set used for evaluation in Table 4.4 might have noisy labels or not be representative enough. Hence,

the proposed model seems to be robust when given more training data and a larger test set. Finally,

the superior performance of the aggregators on the new dataset split shows its relevance to the

construction of well-balanced and accurate algorithms.

4.4.3 Domain generalisation evaluation

The development of medical-oriented deep neural networks is usually strongly influenced by the

data source. Colour, saturation and image quality are important factors for the performance of

these networks. Moreover, the type of sample is also important; for instance, despite the shared

similarities, biopsies and surgical resection samples are quite distinct from each other. Hence, to

evaluate the domain generalisation, the proposed method trained on CRS4k biopsies samples was

evaluated on two external public datasets. The results are presented in Tables 4.5 and 4.6.



46 Semi-supervised & interpretable approach for CRC grading

Table 4.5: Model performance evaluation on the TCGA test set.

Method ACC Binary ACC Sensitivity

Max-pooling 71.55% 80.60% 0.805
MLP (75;5) 61.20% 75.43% 0.753

MLP (300;50) 58.62% 74.13% 0.740

Table 4.6: Model performance evaluation on the PAIP test set

Method ACC Binary ACC Sensitivity

Max-pooling 99.00% 100.00% 1.000
MLP (75;5) 77.00% 98.00% 0.980

MLP (300;50) 77.00% 98.00% 0.980

As expected, due to its high sensitivity, and since almost all cases evaluated are high-grade

cases, the max-pooling approach achieves the best results in terms of multiclass ACC, binary ACC

and sensitivity. Regarding the TCGA dataset, these results can be explained by the fact that these

samples are mostly from surgical resections, with bigger portions of tissue, whereas ours are from

biopsies/polipectomies. Moreover, the datasets are somewhat different regarding the represented

classes, with TCGA containing more poorly differentiated and mucinous adenocarcinomas, which

are underrepresented in the CRS4k training set. Finally, the lower tissue image quality, when

compared to the CRS4k dataset, may also explain this performance drop.

Regarding the better results on PAIP dataset, it can be explained by the better quality of the

WSIs and a H&E staining colour being closer to CRS4k dataset. Moreover, although all PAIP slides

seem to derive from surgical specimens, the sampling of the neoplasias was more superficial in

most of the cases used (representing mostly mucosa and submucosa layers) as opposed to TCGA

samples, in which many samples showcased all colonic layers (mucosa, submucosa, muscular and

adipose tissue), differing greatly from the biopsies and polipectomies of the CRS4k dataset.

Domain generalisation is a complex topic that derives from several variables. In our scenario,

the model displays a good capability to comprehend the content of a WSI collected on another

lab, as seen in Table 4.6. However, there is still work to be done on the generalisation capability

between strong colour differences and the capability of also assessing surgical specimen samples.

4.4.4 Interpretability Assessment

In order to assess how the model classified each tile and to better understand the class distribution

within each case, we retrieved the single tile predictions and assigned them to their respective

position on the slide, creating a predictions map. For each case, we also retrieved the worst tile,

in clinical terms (Figure 4.6(d)). This experiment was conducted with slides from the annotated

data subset (Figure 4.6(a)), using the model trained on the full dataset and further analysed by
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pathologists. By constructing these maps, we allowed pathologists to understand the reasoning of

the model behind a slide prediction. Moreover, if necessary, it can guide and direct the focus of the

pathologist to relevant areas in order to improve the overall workflow in clinical environments. As

can be seen in Figure 4.6(c), although the model was not trained for segmentation, nor focused on

individual tile-label prediction, the results are quite accurate in terms of lesion localisation, when

compared to the ground truth (Figure 4.6(b)). On slides classified as NNeo (top) and LG (middle),

the precision of the tile classification compared to the pathologists’ masks is rather impressive. For

the HG slide (bottom), despite the lower density of tiles predicted as HG, the model was capable of

capturing the majority of the fragments affected, as we verified on the maps generated for all the

annotated slides.

(a) (b) (c) (d)

Figure 4.6: Examples of a model prediction map for each class, from the annotated data subset:
a non-neoplastic case (top), a low-grade lesion (middle) and a high-grade lesion (bottom). Each
column has the slides examples (a), the ground-truth annotation (b), the map with the tile predictions
(c) and the most relevant tile (512×512 px), with the worst clinical class (d). The non-neoplastic,
low-grade and high-grade regions are represented in green, blue and yellow, respectively.
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4.5 Summary

In this chapter, we presented an improved framework for CRC diagnosis. Not only are metrics such

as ACC and the QWK better, but the sensitivity achieves values close to the maximum. Furthermore,

the method was trained and tested on an extended version of one of the largest datasets of colorectal

histological samples publicly available, which increases the robustness of the results. Finally, the

model was validated on external datasets for domain generalisation. Despite the performance drop

in the TCGA dataset, when compared to CRS4k dataset, and some misclassifications in the PAIP

dataset, it is worth noting that the model can detect high-grade lesions reasonably well, even in sets

with many distinct properties compared to the one used for training.

Although achieving remarkable performance, medical applications of DL-based methods have

been severely criticised due to their natural black-box structure. Here, we presented a model that

attempts to support slide decision reasoning in terms of the spatial distribution of lesions. However,

questions such as model robustness and how can we include AI models in the digital workflow of the

pathology lab should be also addressed. In the next chapter, we attempt to answer these requisites

to integrate models into the clinical practice to assist and ease the workload of pathologists.
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The current state-of-the-art CAD systems are based on deep learning approaches. These systems

rely on large volumes of data to learn how to perform a given task. Particularly in computational

pathology, this high volume of data, in addition to the massive resolution of the images, creates

a significant bottleneck of DL approaches that the WSI decomposed into tiles. Hence, in this

chapter, we introduce a bigger colorectal WSI dataset and an efficient tile sampling strategy that is

performed one single time without any sacrifice in the predictive performance. Moreover, to bring

the proposed CAD system closer to clinical practice, and to infer its capabilities to aid pathologists,

we developed a prototype based on a server-side web application. We further collected information

on the misdiagnoses and the pathologists’ feedback.

49
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5.1 Methodology

As concluded in Chapter 3, increasing the number of WSI in training data leads to increased

performance, as does detailed annotation of, at least, part of the dataset. Also, to translate ML

models to the clinic, they should be robust and trained on as many different cases as possible, to

account for the huge data variability. Thus, in this work, we propose a new dataset of colorectal

samples with more than 10,000 WSI (the CRS10k dataset), with about 9% of samples annotated by

pathologists, which adds even more data compared to the extended dataset of Chapter 4. Following

the latter work, we used the learning framework with better performance across the validation

datasets (Figure 5.1). Briefly, it takes advantage of a supervised learning step on annotated data,

that is then used to infer the class of non-annotated tiles. Then, all tiles are ranked based on the

expected value and the top one is used to predict the slide label. With such a bigger dataset, we

propose a tile sampling strategy, to leverage training efficiency.

Figure 5.1: Overall scheme of the proposed methodology containing the mix-supervision framework
used for diagnosing colorectal samples from WSI.

5.1.1 Tile Sampling

Adding more slides to the train set implies increasing the number of tiles seen by the model (which

can amount to more than 1000 per slide) and, consequently, the training time. In fact, in the

weakly-supervised step, the non-annotated tiles are fed to the network and only then sorted to select

the worst one for training. With this setup, all the tiles within a slide have to be seen by the model,

at each epoch. However, in each slide, only the tiles corresponding to lesions are relevant to the

decision. Furthermore, as the model converges, it is expected to select the important tiles better,
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settling on a relatively stable set across epochs. Thus, if the original set of non-annotated tiles

is reduced to a smaller set at the end of the first inference loop in the weakly-supervised phase,

training will become more efficient.

In this sense, we first assess the average number of relevant tiles for the decision, by evaluating

the heterogeneity of tiles on the top rank across the first weakly-supervised epochs. The number of

selected tiles considers a trade-off between computational cost and information potentially lost,

and for that reason, it resulted in empirical experiments. Then, we set the sampling threshold to a

maximum and evaluated its impact on training and validation sets.

This sampling approach is just applied to the non-annotated data for training, since we want to

keep all the annotated data for model supervision. It is also not used for testing, since at that phase

we need to assess all tiles within each slide.

5.1.1.1 Confidence Interval

In order to quantify the uncertainty of a result, it is common to compute the 95 percent confidence

interval. In this way, two different models can be easily understood and compared based on the

overlap of their confidence intervals. The standard approach to calculating these intervals requires

several runs of a single experiment. As we increase the number of runs, our interval becomes

narrower. However, this procedure is impractical for the computationally intensive experiments

presented in this document. Hence, we use an independent test set to approximate the confidence

interval as a Gaussian function [93]. To do so, we compute the standard error (SE) of an evaluation

metric m, which is dependent on the number of samples (n), as seen in Equation 5.1.

SE =

√
1
n
×m× (1−m) (5.1)

For the SE computation to be mathematically correct, the metric m must originate from a set of

Bernoulli trials. In other words, if each prediction is considered a Bernoulli trial, then the metric

should classify them as correct or incorrect. The number of correct samples is then given by a

Binomial distribution X ∼ (n, p), where p is the probability of correctly predicting a label, and n is

the number of samples. For instance, accuracy is a metric that fits all these constraints.

Following the definition and the properties of a Normal distribution, we compute the number of

standard deviations (z), known as a standard score, that can be translated to the desired confidence

(c) set to 95% of the area under a normal distribution. This is a well-studied value, which is

approximately z ≈ 1.96. This value z is then used to calculate the confidence interval, calculated as

the product of z and SE as seen in Equation 5.2.

M± z∗
√

1
n
×m× (1−m) (5.2)



52 From the deep learning model to a clinical software prototype

5.1.2 Datasets

Following the CRS1k and CRS4k datasets, presented in Chapters 3 and 4, with about 1,000 and

4,000 samples, respectively, we further extended our data to 10,000 WSI (CRS10k dataset). This

new set contains 9.26x and 2.36x more slides than CRS1k and CRS4k, respectively. Similarly,

the number of tiles is multiplied by a factor of 12.2 and 2.58 (Table 4.1). This volume of slides is

translated into an increase in the flexibility to design experiments and infer the robustness of the

model, as well as the inclusion of an independent test set. Roughly 9% of the CRS4k dataset (967

WSI) was manually annotated by a team of pathologists, as described in Chapter 3.

The CRS4k dataset was divided into train, validation and test sets, with 8587, 1009 and 900

non-overlapping samples each, respectively. The first includes all the strongly annotated slides

and other slides randomly selected. The validation set was also randomly selected. This partition

kept the slides of the CRS1k and CRS4k in the same sets, ensuring that slides previously used for

validation were not used for training with the new dataset. Finally, the test set was selected from

the newly added data.

Domain generalisation was also tested with the same two external datasets used in Chapter 4:

TCGA and PAIP datasets.

Table 5.1: Datasets summary, with the number of slides (annotated samples detailed in parenthesis)
and tiles, distributed by class.

NNeo LG HG Total

# slides 300 (6) 552 (35) 281 (59) 1133 (100)

CRS1k dataset # annotated tiles 49,640 77,946 83,649 211,235

# non-annotated tiles - - - 1,111,361

# slides 663 (12) 2394 (207) 1376 (181) 4433 (400)

CRS4k dataset # annotated tiles 145,898 196,116 163,603 505,617

# non-annotated tiles - - - 5,265,362

# slides 1740 (12) 5387 (534) 3369 (421) 10,496 (967)

CRS10k dataset # annotated tiles 338,979 371,587 341,268 1,051,834

# tiles - - - 13,571,871

# slides 1 1 230 232
TCGA

# tiles - - - 1,568,584

# slides - - 100 100
PAIP

# tiles - - - 97,392
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5.1.3 Experimental setup

The backbone network used was ResNet-34 [86], trained on Pytorch with the Adaptive Moment

Estimation (Adam) [94] optimiser, a learning rate of 6×10−6 and a weight decay of 3×10−4. The

training batch size was set to 32, for both fully and weakly supervised training, whereas the test and

inference batch size was 256. The model’s performance was evaluated on the validation set, and it

was used to select the best model based on the accuracy and QWK. The training was accelerated by

an Nvidia Tesla V100 (32GB) GPU.

5.2 Prototype

The proposed algorithm was integrated into a fully functional prototype to enable its use and

validation in a real clinical workflow. This system was developed as a server-side web application

that can be accessed by any pathologist in the lab (Figure 5.2).

Figure 5.2: Main view of the CAD system prototype: Slide identification, confidence per class,
diagnostic, mask overlay controller, results download as csv and slide search are some of the
features visible.

The system supports the evaluation of either a single slide or a batch of slides simultaneously

and in real-time. It also caches the most recent results, allowing re-evaluation without the need

to re-upload slides. In addition to displaying the slide diagnosis, and confidence level for each

class, a visual explanation map is also retrieved, to draw the pathologist’s attention to key tissue

areas within each slide (all seen in Figure 5.2). The opaqueness of the map can be set to different

thresholds, allowing the pathologist to control its overlay over the tissue. An example of the zoomed

version of a slide with a lower overlay of the map is shown in Figure 5.3.
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Figure 5.3: Zoomed view of a slide from the CAD system prototype, with the predictions map with
a small overlay threshold.

Furthermore, the prototype also allows user feedback where the user can accept/reject a

result and provide a justification (Figure 5.4), an important feature for software updates, research

development and possible active learning frameworks that can be developed in the future. These

results can be downloaded with the corrected labels to allow for further retraining of the model.

Figure 5.4: CAD system prototype report tool: the user can report if the result is either correct,
wrong or inconclusive and leave a comment for each case individually.
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There are several advantages to developing such a system as a server-side web application.

First, it does not require any specific installation or dedicated local storage in the user’s device.

Secondly, it can be accessed at the same time by several pathologists from different locations,

allowing for a quick review of a case by multiple pathologists without data transference. Moreover,

the lack of local storage of clinical data increases the privacy of patient data, which can only be

accessed through a highly encrypted virtual private network (VPN). Finally, all the processing can

be moved to an efficient graphics processing unit (GPU), thus reducing the processing time by

several orders of magnitude. Similar behaviour on a local machine would require the installation of

dedicated GPUs in the pathologists’ personal devices. This platform is the first Pathology prototype

for colorectal diagnosis developed in Portugal, and, as far as we know, one of the pioneers in the

world. Its design was also carefully thought to be aligned with the needs of the pathologists.

The proposed solution was tested in the clinical environment, with 100 extra slides: 28 NNeo,

44 LG and 28 HG. These differ from the CRS10k dataset, in the sense, that they were not selected

from the archive. Instead, these cases were actively collected from routine exams, and the prototype

was used to support the pathologists in their tasks.

5.3 Results and discussion

5.3.1 Effectiveness of tile sampling

To find the most suitable threshold for sampling the tiles used in the weakly supervised training, we

evaluated the percentage of relevant tiles that would be left out of the selection, if the original set

was reduced to 75, 100, 150 or 200 tiles, over the first five inference epochs. A tile is considered

relevant if it shares the same label as the slide, or if it would take part in the learning process in

the weakly-supervised stage. As it is possible to see in Figure 5.5, if we set the maximum number

of tiles to 200 after the second loop of inference, we would discard only 3.5% of the potentially

informative tiles, in the worst-case scenario. On the other side of the spectrum, a more radical

sampling of only 50 tiles would lead to a cut of up to 8%.

Moreover, to assess the impact of this sampling on the model’s performance, we also evaluated

the accuracy and the QWK with and without sampling the top 200 tiles after the first inference

iteration (Table 5.2). This evaluation considered sampling applied only to the training tile set, and

to both the training and validation tile sets. As can be noticed, the performance is not degraded

and the model is trained in a much faster way. In fact, using the setup previously mentioned, the

first epoch of inference, with the full set of tiles takes 28h to be completed, while from the second

loop the training time decreases to only 5h per epoch. Without sampling, training the model for 50

epochs would take around 50 days, whereas with sampling it takes around 10.

5.3.2 CRS10k test set

After model inference in the CRS10k test set (n = 900), 81 cases had a different prediction from

the ground truth. These cases were all blindly reviewed by two pathologists, and discordant cases
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Figure 5.5: Tile sampling impact on information loss: percentage of tiles not selected due to
sampling with different thresholds, over the first four inference epochs.

Table 5.2: Model performance comparison with and without tile sampling of the top 200 tiles from
the first inference iteration. Compared the best epoch of the initial five and ten epochs.

Best Accuracy at Best QWK at

Sampling 5th epoch 10th epoch 5th epoch 10th epoch

No 84.94%±2.20 86.42%±2.11 0.809±0.024 0.829±0.023
Train 85.43%±2.18 86.82%±2.08 0.817±0.024 0.828±0.023

Train and Validation 86.12%±2.13 86.92%±2.08 0.824±0.023 0.829±0.023

from the initial ground truth were discussed and classified by both pathologists (and in case of

doubt/complexity, a third pathologist was also consulted). Of these, 22 cases were found to be

actually correctly classified by the algorithm, and only 59 cases have true misclassification.

Globally, most of the remaining misclassifications were over-calls (n=37), when the model

upstaged grading by one category. In 22 cases the algorithm has predicted a lower grade than

expected. It is also interesting to note that in no case did the algorithm miss a prediction on a

2-order scale, i.e. classifying a normal case as high risk or the opposite. The final test results are

presented in Table 5.3, where we also present the comparison with the model trained with fewer

data (CRS4k dataset), which helps to conclude that adding more data to training is in fact beneficial

for model performance.

Moreover, we also inspected the distribution of the confidence values of the model when

predicting the class for each slide of the test set. From Figure 5.6, it is interesting to see that the

model is much more confident when predicting right (blue lines), using both the CRS4k and the
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Table 5.3: Model performance evaluation on the CRS10k test set.

Training data ACC Binary ACC Sensitivity

CRS4k 93.44%±1.61 97.78%±0.96 99.60%±0.50

CRS10k 89.44%±2.01 96.11%±1.26 99.72%±0.38

CRS10k datasets. Moreover, adding more data increases the robustness of the model, with wrong

cases having generally lower confidence in the CRS10k model.

Figure 5.6: Kernel density estimation of the confidences of correct and incorrect predictions
performed by the model trained with CRS10k training data (left) and the model trained with the
CRS4k training data (right).

5.3.3 Domain generalisation

As in Chapter 4, we also evaluated the domain generalisation capability of the model, using the

TCGA (Table 5.4) and PAIP datasets (Table 5.5). Here too one can conclude that more training

data leads to an improved model, with the CRS10k version showing much better overall metrics in

both external datasets. In fact, particularly on the PAIP dataset, the model trained with fewer data

(CRS4k) misled some samples as low-grade dysplasia, which were all corrected in the new version.
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Table 5.4: Model performance evaluation on the TCGA test set.

Training data ACC Binary ACC Sensitivity

CRS4k 70.69%±5.86 98.71%±1.45 0.991±0.012

CRS10k 84.91%±4.61 99.13%±1.19 0.996±0.008

Table 5.5: Model performance evaluation on the PAIP test set.

Training data ACC Binary ACC Sensitivity

CRS4k 69.00%±9.06 100.00%±0.00 1.000±0.000

CRS10k 100.00%±0.00 100.00%±0.00 1.000±0.000

5.3.4 Prototype usability

The first test of the prototype in the "real world" scenario revealed an accuracy of 89.00%±6.13,

a binary accuracy: 98.00%±2.74 (by joining both low and high-grade cases) and sensitivity of

98.60±0.26, in line with the results obtained in the previous test sets.

As it is currently designed, the prototype works preferentially as a "second opinion", allowing

to assess difficult and troublesome cases, without the immediate need for the intervention of a

second pathologist. Due to its “user-friendly” nature and very practical interface, the cases can

be easily introduced into the system and results are rapidly shown and easily accessed. Also, by

not only providing results but presenting visualisation maps (corresponding to each diagnostic

class), the pathologists can compare their own remarks to those of the algorithm, towards a future

“AI-assisted diagnosis”.

Another relevant aspect is that the prototype allows for user feedback (agreeing or not with

the model’s proposed result), which can be further integrated into further software updates. Also

interesting, is the possibility of using the prototype as a triage system on a pathologist´s daily

workflow (by running upfront, before the pathologist checks the cases). By signalling the cases that

would need to be more urgently observed (namely high-risk lesions), it would allow the pathologists

to prioritise their workflow. Further, by providing a previous assessment of the cases, it would

also contribute to enhancing the pathologists’ efficiency. Although it is possible to use the model

as it is upfront, it would still classify many samples incorrectly (since it was not trained on the

full spectrum of colorectal pathology). Thus, we believe it should also have (at least) a "others"

category, to better serve as a triage system.

Presently, there is no recommendation for dual independent diagnosis of colorectal biopsies

(contrary to gastric biopsies, where, in cases in which surgical treatment is considered, it is

recommended to obtain a pre-treatment diagnostic second opinion [27]). However, if in the future

this also becomes a requirement, a tool such as this prototype could assist in this task. In fact,

such double revision guidelines, together with the worldwide shortage of pathologists, make the

need for CAD systems even more relevant for better patient care. Lastly, we also anticipate that
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this prototype, and similar tools, can be used in a teaching environment since its easy use and

interpretable capability (through the visualisation maps) allows for easy understanding of the given

classifications. Moreover, the web-based interface allows for easy use and sharing.

5.4 Summary

In this chapter we propose a novel dataset, with more than 10,000 colorectal WSI, a sampling

approach, to reduce the difficulty of using large datasets, and a prototype that provides a simple

integration in clinical practice and visual explanations of the model’s predictions. Furthermore,

the mistakes committed by the model were blindly revised by the pathologists, which enabled the

correction of some mislabelling errors and a deeper understanding of the model’s strengths and

weaknesses.

The proposed prototype was evaluated in the daily routine of the pathology lab, from which

we conclude that it really aids in the analysis of CRC slides, by detecting high-grade lesions in

colorectal biopsies with high sensitivity. Moreover, by visually displaying tissue classification, it

helps to focus the pathologist’s attention on key areas. Thus, it can be used as a second opinion and

even as a flag for details that may have been missed at first glance.
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Chapter 6

Cervical cancer insights

6.1 Epidemiology

Cervical cancer (CCa) is the fourth most prevalent cancer and also the fourth cause of cancer-

related deaths in women, worldwide [95]. Around 80-90% of CCa are squamous cell carcinomas

(SCC) and the large majority of these are caused by human papillomavirus (HPV) infection,

although HPV-indepen- dent forms of cancer also exist [96]. Fortunately, CCa is one of the most

successfully preventable and treatable forms of cancer, as long as it is early detected and effectively

managed [97]. As such, screening pre-cancerous lesions and vaccination are key to preventing the

disease. Squamous intraepithelial lesions (SILs) of the uterine cervix, or cervical intraepithelial

neoplasia (CIN), are pre-malignant HPV-driven proliferations of the squamous epithelium, showing

viral cytopathic changes and/or maturation alterations that do not extend beyond the basement

membrane [96].

6.2 Cervical dysplasia grading

Grading cervical dysplasia is currently based on a two-tiered system (LSIL/HSIL), as it shows

enhanced reproducibility between pathologists and higher biologic significance when compared

with the previously used system (CIN 1/2/3) [96]. Grading is mostly based on the proportion and

location of immature cells within the squamous epithelium and on the cytopathic changes caused

by HPV. According to WHO classification of tumours, low-grade squamous intraepithelial lesions

(LSIL) are characterised by the proliferation of basal/parabasal-like (immature looking) cells within

the lower third of the epithelium (Figure 6.1(b)), along with the so-called koilocytic atypia (i.e.

recognisable nuclear and cytoplasmic changes caused by HPV, namely characteristic perinuclear

vacuolisation and nuclear enlargement, irregularity and hyperchromasia) [96]. Mitotic activity can

be observed, but atypical mitoses should be absent or rare. In high-grade squamous intraepithelial

lesions (HSIL), on the other hand, the proliferation of basal/parabasal-like cells extends to the

middle and upper third of the epithelium (Figure 6.1(c)). Nuclear abnormalities are seen throughout

the thickness of the epithelium as well as mitotic activity (including atypical mitosis) [96]. The

63
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term HSIL encompasses the formerly known CIN2 and CIN3 lesions, as well as carcinoma in situ

lesions. It is known that similarly to other grading tasks in pathology, grading cervical dysplasia

is hurdled by significant inter- and intra-observer variability [98]. Nonetheless, distinguishing

normal mucosa, LSIL and HSIL has major clinical implications and remains an important task

in gynaecological pathology. The main interpretative problems in this context are the distinction

of normal mucosa (Figure 6.1(a)), which can show nonspecific inflammatory/reactive changes,

from dysplasia (LSIL) and also to distinguish irrelevant, mostly transient, dysplasia (LSIL) from

pre-cancer (HSIL) [99]. Using ancillary markers, namely p16 staining, can help in some cases,

but its overuse should be avoided, since it might cause over-diagnosis of high-grade lesions, and it

shouldn’t exceed 20-40% (or even less) of cervical biopsies [96].

(a) Non-neoplastic, normal mucosa

(b) Low-grade squamous intraepithelial lesion - LSIL

(c) High-grade squamous intraepithelial lesion - HSIL

Figure 6.1: Cervical squamous epithelium dysplastic progression: (a-c) from normal mucosa to
HSIL. Examples from CADpath dataset, sampled at 10X magnification.



6.3 Computational Pathology in CCa 65

6.3 Computational Pathology in CCa

Computational pathology studies applied to cervical cancer have been mostly focused on cytol-

ogy [100–102], since the initial screening of lesions is performed using cytology specimens (smears

or liquid-based preparations), either by HPV molecular testing or co-testing HPV in combination

with cytology evaluation [103–105]. Nonetheless, it is the histologic assessment of cervical biopsies,

loop electrosurgical excision procedure (LEEP) samples and surgical specimens that constitutes the

gold standard for the diagnosis of cervical lesions. As such, cervical histopathology image analysis

is also an active research field [106]. Noteworthy, in the last five years, most classification studies

using deep-learning approaches in cervical cancer have only used cropped images as opposed to

full WSI [107–115].

6.3.1 Automatic cervical dysplasia grading

In 2019, Li et al. [107], proposed a transfer learning framework of Inception-V3 network to

classify well, moderately and poorly differentiated cervical carcinomas. They used 307 IHC-

stained images and reported a 77.3% accuracy. Further, also in 2019, they presented an improved

method for the same task, with 88% global accuracy. In this study [108], a weakly supervised

framework based on multilayer-hidden conditional random fields was developed on a dataset of

more than 100 IHC-stained images. Also in 2019, a study by Xue et al. [109] analysed the 4-class

(normal, CIN 1 to 3) classification problem, using conditional generative adversarial networks

(cGANs) to expand the training dataset, by synthesising realistic cervical images. They report

using 1,112 normal, 181 CIN1, 463 CIN2 and 454 CIN3 patches of 256×128 pixels, although not

specifying from how many patients/samples the patches derive. Their results show a significant

improvement in classification accuracy from 66.3% to 71.7%, using the same ResNet-18 baseline

classifier, after leveraging with the cGAN-generated images. More recently, the same group

proposed also a synthetic augmentation framework that selectively adds new synthetic image

patches, generated by their GAN model (HistoGAN), rather than expanding directly the training set

with synthetic images [112]. This experiment, using a similar cervical dataset, and an additional

dataset of metastasised lymph node images, resulted in significant and consistent improvement of

the classification performance: 6.7% and 2.8% higher accuracy, compared with their previous work,

for cervical histopathology and metastatic cancer datasets, respectively.

In 2020, Huang et al. [111] proposed a classification method based on the least absolute

shrinkage and selection operator (LASSO) and ensemble learning support vector machine (EL-

SVM). Images from 468 cervical biopsies were used, and an 86.84% average accuracy was shown,

classifying normal, LSIL and HSIL lesions and carcinoma. Alternately, Sornapudi et al. [110] have

built a network pipeline (DeepCIN), with two classifier networks, to analyse high-resolution images

(n = 453, manually extracted from 146 WSIs), with an accuracy of 88.4% (normal, CIN 1 to 3).

In 2021, Albayrak et al. [113] reported a classification accuracy of 65.4% also grading cervical

precursor lesions (normal, CIN 1 to 3), using a morphological-based feature extraction method.

Their dataset consists of 128 images from 54 patients.
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In 2022, Cho et al. [114], aimed to develop and validate deep learning (DL) models to classify

cervical intraepithelial neoplasia (normal, CIN1 to 3) automatically. The models were developed

on a dataset comprising 1106 images from 588 patients, and the mean accuracies for the four-class

classification were 88.5% by DenseNet-161 and 89.5% by EfficientNet-B7, which were similar to

the reported performance of two pathologists (93.2% and 89.7%). Further, they also calculated the

performance for a three-class classification (correspondent to normal, LSIL, and joining CIN2 and

CIN3 as HSIL), and the mean accuracies of DenseNet-161 and EfficientNet-B7 increased to 91.4%

and 92.6%, respectively (whereas pathologists’ performances were 95.7% and 92.3%). Lastly,

Habtemariam et al. [115] have also proposed a cervical cancer classification system using DL

techniques. In this study, the authors resorted to 915 histopathology images (and also included 4005

colposcopy images). They reported a test accuracy of 94.5% for cervical cancer classification into

normal, pre-cancer, squamous cell carcinoma and adenocarcinoma, using the Efficientnet-B0 model.

Regarding the colposcopy images, the model achieved an accuracy of 96.84% for cervix-type

classification.

To the best of our knowledge, regarding classification tasks on cervical pathology, only the work

of Sornapudi et al. [116], in 2021, was developed directly on WSI. Working on such images has the

increased difficulty of high dimensionality and resolution, which can not be easily fitted in graphics

process units (GPU), usually used to train DL models. However, it is the most significant as it is the

only way for models to be effectively translated to clinical practice. They have developed a novel

image analysis toolbox to automate CIN diagnosis of cervical biopsies, with an 85% exact-class

accuracy. This work shows the potential of the used methodology but it was trained with only 150

WSI and using the CIN grading system, which is not usually used nowadays.

6.4 Summary

Cervical cancer is the fourth most common female cancer worldwide and the fourth leading cause

of cancer-related death in women. Nonetheless, it is also among the most successfully preventable

and treatable types of cancer, provided it is early identified and properly managed. As such, the

detection of pre-cancerous lesions is crucial. These lesions are detected in the squamous epithelium

of the uterine cervix and are graded as LSIL and HSIL, respectively. Being located in a usually

small portion of the tissue sample, these malignant areas can sometimes be not so evident and,

because of their complex nature, are subjective to grade. Therefore, developing machine learning

models, particularly directly on WSI, can assist pathologists in this task.

Most of the work already developed for the automatic assessment of cervical dysplasia focuses

on a CIN classification system, prior to the currently recommended system, which is not as

reproducible among pathologists and has lower biological significance. On the other hand, only

one author presents a methodology to use WSI and not just crops/images of manually identified

areas of epithelium. Despite the potential reported in the literature, these works cannot be directly

applied in clinical practice, and more effort is needed in their development into a diagnostic tool.
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The World Health Assembly adopted a global strategy for cervical cancer elimination in August

2020, which is set on 3 pillars: vaccination, screening and treatment [117, 118]. Each country

should meet the 90-70-90 targets, by 2030: 90% of girls fully vaccinated against HPV by the

age of 15; 70% of women screened using a high-performance test by the age of 35, and again by

the age of 45; 90% of women with pre-cancer treated and 90% of women with invasive cancer

managed [117, 118]. Thus, as stated by Rodriguez et al. [119], technological innovation is needed to

achieve cervical cancer screening and management targets, as well as the strategic implementation

of automatic diagnosis tools in clinical practice. To this end, we propose an approach to grade

dysplasia directly from cervical whole-slide images (WSI), that first identifies squamous epithelium

tissue and then classifies it, helping pathologists assess these cases.

67
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7.1 Methodology

7.1.1 Problem definition

As seen before, automatic cervical dysplasia grading should be done on H&E WSI and focused on

the cells of the squamous epithelium, that on LEEP samples and surgical specimens is usually a

thin area within the sample tissue. Thus, despite the usual big dimension of digitised slides, which

easily become hard and tedious to annotate, fully-supervised models for cervical dysplasia may

require annotation and labelling of epithelium, besides the usual annotation of relevant areas for

diagnosis/classification. However, in general, WSI are not usually publicly available, and, when

they are, they have only the associated diagnosis and no detailed pixel-level annotations.

In this sense, and following a common approach in computational pathology, we propose a

weakly-supervised methodology for cervical dysplasia grading, based on tiles (small areas within

the slide) using different levels of training supervision, in an attempt to leverage a big dataset only

partially annotated with full details. In this particular case, we define three different levels of data

for training, as represented in Figure 7.1:

1. Labelled slides (LS): each slide labelled only with the slide diagnosis can be abstracted as a

set (or bag) of tiles from the epithelial regions (tiles from non-epithelial regions are not used

in the development of the DL model); The labelling of each tile is unknown, but it is assumed

that the worst of the unknown tile labels corresponds to the bag labelling (slide diagnosis);

Epithelial areas are automatically identified using a (deep) segmentation model;

2. Annotated epithelium (AE): epithelium was delineated and labelled on a subset of the slides;

For model development, each labelled epithelial region is considered a set/bag of tiles where

the labelling of the set is known but the labelling of the individual tiles is not; The slides with

Figure 7.1: Levels of annotation used for model training: labelled slides (top), annotated epithelium
(middle) and annotated tiles (bottom).
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labelled epithelia yield smaller bags than the slides with diagnosis only, which improves the

quality of training;

3. Annotated tiles (AT): within the annotated epithelium, smaller regions of interest were

delineated, indicating unequivocal tissue areas of non-neoplastic tissue, LSIL and HSIL,

from where tiles with known labels were retrieved.

Thus, besides alleviating the task of annotation, such a scheme can serve two other purposes:

to gather details to train a supervised segmentation model, focusing the evaluation of dysplasia

degree on the regions of interest (ROIs), and add more information to the tiles bags, to facilitate the

classifier learning.

7.1.2 Learning framework

The proposed framework for cervical dysplasia grading on H&E digitised slides (Figure 7.2)

consists of two main parts: an epithelium segmentation model, to locate the region of interest (ROI)

to focus on, and a tile classifier, to distinguish normal epithelium, low and high-grade lesions.

Figure 7.2: Proposed framework for cervical dysplasia grading on H&E digitised slides, with an
epithelium segmentation model and a tiles classification model.

7.1.2.1 Epithelium segmentation

As mentioned before, relevant features of cervical dysplasia are located in the epithelium, a small

portion of the tissue area (marked with blue arrows in the example of Figure 7.3(a)). In this way,

assessing the whole tissue area would not only be more time-consuming but would also introduce a

lot of noise into the learning process, as the features of the submucosa areas (beneath the epithelium

band, as the black arrows in Figure 7.3(a)) are not directly related to the degree of dysplasia.

To this end, we propose the U-NET architecture [120], a standard biomedical image segmenta-

tion model, trained with fragment crops of the slide, resized to 1024×1024 pixels, to account for

the huge variability of slide/tissue/epithelium dimensions between slides. In fact, the amount of
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(a)

(b)

Figure 7.3: Fragment crop (a), with the epithelium annotation mask (b).

tissue in each slide may vary a lot, as well as the ratio of epithelium/submucosa tissue. Moreover,

WSIs have huge dimensions (commonly several hundreds of pixels in both width and height) and

can not be used in their original size. By using each tissue fragment individually, we can reduce the

loss of information of image resize and also the sparsity of images to be segmented. Each fragment

is cropped from the slide using an Otsu’s thresholding [85] mask as a reference to locate tissue and

define its limits (Figure 7.2). The end goal is to get a mask, such as the annotation one (example in

Figure 7.3(b)), to guide the image pre-processing step for the classification model.

For learning the segmentation model, we used the BCE-Dice loss (Ls), a standard function used

on image segmentation, based on the combination of the binary cross-entropy (BCE) and the Dice

loss, defined as:

Ls = BCE +Dice Loss (7.1)

where the BCE term is defined as,

BCE (y, ŷ) =−(y× log(ŷ)+(1− y)× log(1− ŷ)) (7.2)

and the Dice loss term is defined as,

Dice Loss (y, ŷ) = 1− 2yŷ+λ

y+ ŷ+λ
(7.3)
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with y ∈ {0,1} being the target value at each individual pixel, ŷ ∈ [0,1] the predicted value retrieved

by the model and λ a smoothing factor (set to 1).

7.1.2.2 Tissue classification

Following the segmentation step, with the output mask (or epithelium annotations in case of

annotated samples), we crop smaller regions containing the identified ROIs. However, these images

are still too big to be fitted within a GPU and thus, need to be decomposed, to avoid the loss of key

tissue details if the image is resized. Moreover, ideally, the smaller areas to be extracted should

include the entire epithelium thickness, so the model can learn the proliferation of basal/parabasal-

like cells, as described in Section 6.2. Hence, we use the centre line of the epithelium mask to

sample tiles of 512×512 pixels, from the WSI level corresponding to 20X, along the extension of

the epithelium (Figure 7.4).

Figure 7.4: Example of an epithelium crop (top) with some tiles of 512x512 pixels (bottom),
sampled along the centre line (in blue) of the epithelium area.

Following a common approach in computational pathology, we propose a semi-supervised

learning scheme, based on multiple instance learning (MIL), using instance bags that can include

the tiles of all epithelium areas within a slide, labelled with the slide diagnosis, or tiles of each

epithelium area, in the case of annotated samples. Also, taking advantage of some areas specifically

annotated for each class, we include some individually labelled tiles, for extra supervision.

With such a setup, to train the classification model, we assume that each bag is represented by

its worst tile (the tile with poorer diagnosis), following a generalisation of the MIL assumption. If

there is one HSIL tile in the set, then the bag (i.e. the epithelium area or the slide) is diagnosed

accordingly. On the other hand, if no tile has dysplasia, the bag is classified as non-neoplastic. It

is worth mentioning that for the classification model we only use three classes (NNeo, LSIL and

HSIL) since the "others" categories correspond to slides without epithelium areas. To find the most

representative tile, the model is firstly used to infer the class of all tiles in the set, which are then

ranked. Tile ranking is based on the expected value of the predictions, following the approach

of [121, 122]. For a tile Ts,t , where s is the index of the slide and n ∈ {1, · · · ,ns} is the tile number
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within the slide, the expected value of the score is defined as:

E(Ĉs,t) =
n

∑
i=1

i× p
(

Ĉs,t =C(i)
)

(7.4)

where Ĉs,t is a random variable on the set of possible class labels {C(1), · · · ,C(n)} and p
(
Ĉs,t =C(i)

)
are the n output values of the neural network.

For this task, we used the weighted κ loss function (Lc), based on the quadratic weighted kappa

(QWK), defined as:

Lc = 1−κ, with κ = 1−
∑

n
y,ŷ=1 wy,ŷ xy,ŷ

∑
n
y,ŷ=1 wy,ŷ my,ŷ

(7.5)

where n is the number of classes, wyŷ belongs to the weight matrix, xyŷ belongs to the observed

matrix and myŷ are elements in the expected matrix. The n×n matrix of weights w is computed

based on the difference between the actual (y) and the predicted (ŷ) class, as follows:

wy,ŷ =
(y− ŷ)2

(n−1)2 (7.6)

In this way, class ordinality is taken into account during model training by weighting misclassi-

fications: model predictions closer to the target label are less penalised than more distant ones. In

fact, the classification targets are defined upon dysplasia grading, meaning that misclassifying an

HSIL as NNeo is worse than identifying it as LSIL.

7.1.3 Dataset

For this work, we gather an in-house dataset that contains 2000 WSIs of LEEP samples and surgical

specimens (cervical biopsies were not included). Since the main goal is to grade cervical dysplasia,

labelling follows the two-tiered diagnostic system, thus dividing the slides into four categories:

non-neoplastic (NNeo), LSIL, HSIL or non-representative ("others").

The slides were assessed and labelled by one of two pathologists, and the diagnosis was

compared with the original report (which served as a second grader). If both were coincident, no

further assessment was performed. In case of difference, or case complexity, the case was rechecked

and decided by a third pathologist. Further, a subset of slides (n = 186, approximately 10% of the

complete dataset) was also manually annotated (like the example in Figure 7.5), using the Sedeen

Viewer software [79], delineating epithelium areas and characteristic areas correspondent to the

different classification categories. Table 7.1 summarises the class distribution of annotated and

non- annotated data, including the number of fragment crops, epithelium crops (obtained from

annotations or from the segmentation model for the non-annotated set), and the tiles obtained after

the pre-processing described in Section 7.1.2.2.

All cases were retrieved from the data archive of the IMP Diagnostics laboratory, Portugal, and

were digitised with 2 Leica GT450 WSI scanners, at 40X magnification (pixel size of 0.26µm2).
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Figure 7.5: Data annotation example: (red) epithelium areas, (blue) LSIL and respective tiles below,
(pink) HSIL and respective tiles below, (black) uncertain label areas not used for training.

Table 7.1: Dataset summary: number of samples per class, with the annotated ones indicated
in parenthesis. *Fragment crops are divided into positive (that include NNeo, LSIL and HSIL
classes) and negative samples ("others" class), if they contain or do not contain epithelium areas,
respectively.

Classes Slides Fragment crops Epithelium areas Tiles

NNeo 702 (34) 2,082 (52) 35,038 (1,413)
LSIL 885 (67) 5,620 (240) 58,419 (4,868)
HSIL 323 (61)

3,496 (224)*

1,885 (91) 17,154 (1,087)
Others 90 (24) 184 (88)* – –

Total 2,000 (186) 3,680 (312) 9,587 (383) 110,611 (7,368)

Data collection and usage were performed following national legal and ethical standards applicable

to this type of data. Since the study is retrospectively designed, and no protected health information

was used, patient informed consent is exempted from being requested. Diagnostics were made

using a medical grade monitor LG 27HJ712C-W and the Aperio eSlide Manager software.

To test the entire framework in an independent set of slides, the dataset was divided into

a training and a test set, containing 1400 (70%) and 600 (30%) samples, respectively. All the

annotated slides were kept to train the models and, from the non-annotated set, all the "others"

cases, that don’t have epithelium areas to be segmented, were used for testing.

7.1.4 Training details

The UNet model was randomly initialised and trained using the Adaptive Moment Estimation

(Adam) [123] optimiser (learning rate of 1× 10−4), during 250 epochs, with mini-batches of 4

images, resised for 1024×1024. The classification model was initialised with the ImageNet weights

and trained with the Adam optimiser, a learning rate of 1×10−5 and a batch size of 16, for 300
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epochs. The models’ performance was evaluated at the end of each epoch to select the best model

based on the validation loss and the validation accuracy for the segmentation and classification

tasks, respectively. All experiments were conducted using Pytorch and on a single Nvidia Tesla

V100 (32 GB) GPU.

7.2 Results & discussion

7.2.1 Segmentation model

Considering the lack of literature methods that use the entire slide and the same grading system,

to perform a benchmark, we performed several ablation studies to confirm the capabilities of the

proposed methodology. In this section, the results of experiments conducted for the segmentation

and the classification models are presented individually, as well as the results of the complete

framework.

To train the segmentation model we used all of the annotated slides (186), from which we

cropped 312 tissue fragments, divided into training and validation sets, in a ≈ 70/30 ratio respec-

tively, taking into account class (with or without epithelium) and patient stratification (Table 7.2).

All experiments were evaluated in 88 fragments crops, based on 5 metrics at the pixel level: Dice

score, intersection over union (IoU), sensitivity, precision and accuracy (Table 7.3).

Table 7.2: Class distribution of the fragments crops used to train the segmentation model.

Classes Training Set Validation Set Total

Positives 183 (81.70%) 72 (81.82%) 255 (81.73%)
Negatives 41 (18.30%) 16 (18.18%) 57 (18.27%)

Total 224 88 312

Table 7.3: Performance of the UNet model for epithelium segmentation, trained with different input
images (3-channel vs 1-channel) and different loss functions (BCE vs. BCE-Dice Loss).

Model version Loss function Dice score IOU Sensitivity Precision

UNet w/ RGB channels 74.46% 60.67% 75.90% 74.41%
UNet w/ grayscale 70.54% 55.63% 73.93% 68.13%
UNet w/ saturation channel

BCE
53.24% 37.47% 54.69% 55.24%

UNet w/ RGB channels 80.64% 68.17% 82.80% 79.68%
UNet w/ grayscale 77.81% 64.44% 83.27% 74.73%
UNet w/ saturation channel

BCE-Dice
66.86% 51.75% 72.49% 63.45%

The first experiment used the images’ RGB channels as input, which achieved a Dice score of

80.64%. Next, in an attempt to understand if the difference in the colour of the epithelium could

be confusing the model, since some epithelium areas are darker than others, we trained the model
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with grayscale images, and also using the saturation channel of the HSV colour space. However,

as reported in Table 7.3, the models trained with only one channel did not perform better, so we

can conclude that colour information is relevant for the correct distinction between epithelium

and submucosa regions, even though the variability mentioned above. Thus, the RGB version

was selected as the segmentation model to use for the complete framework. Additionally, we

also trained the segmentation model with the standard pixel-wise binary cross-entropy loss (BCE),

which showed to be less adequate for the task at hand with any type of input (Table 7.3).

When analysing the predicted masks, as some examples in Figure 7.6, it is possible to see that,

in most cases, the errors should not significantly affect the next stage of classification, since most

errors are a few extra or missing pixels at the edges of the epithelium. Only very rarely does the

model fail to recognise a large part of the epithelium or misidentify a significant area.

(a) Negative crop with Dice score of 1. (b) Negative crop with Dice score of 0.

(c) Positive crop with Dice score of 0.97. (d) Positive crop with Dice score of 0.

Figure 7.6: Examples of outputs of the segmentation model (in blue) in comparison with the ground
truth from annotations (in red).

7.2.2 Classification model

To train the classification model we used 383 annotated epithelial regions, divided into training and

validation sets, also taking into account patient and class stratification, as for the segmentation task

(Table 7.4), resulting in 111 ( 29%) examples to validate and choose the best classification model.

Since we only want to classify epithelium areas, the data classes are NNeo, LSIL and HSIL.
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Table 7.4: Class distribution of the annotated epithelium areas used to train the classification model.

Classes Training Set Validation Set Total

NNeo 37 (13.60%) 15 (13.51%) 52 (13.58%)
LSIL 177 (65.08%) 63 (56.76%) 240 (62.66%)
HSIL 58 (21.32%) 33 (29.73%) 91 (23.76%)

Total 272 111 383

For this task experiments, we started by testing two loss functions (the standard cross-entropy,

and an ordinal one, the weighted κ) and three versions of the ResNet network (with 18, 34 and 50

layers), evaluating the accuracy, quadratic weighted kappa (QWK), sensitivity, precision, F1-score

and the mean AUC (Table 7.5). The best performing model was the ResNet-34, trained with the

weighted κ loss function, which achieved an accuracy of 69.64% and a sensitivity of 72.97%.

Table 7.5: Performance of the classification model: architectures and loss functions comparison.

Model Loss function Accuracy QWK Sensitivity Precision F1-score AUC

ResNet-18 67.47% 0.56 68.47% 70.86% 69.09% 0.76
ResNet-34 67.90% 0.55 72.07% 73.23% 72.50% 0.80
ResNet-50

CE
66.36% 0.50 70.27% 71.45% 70.66% 0.79

ResNet-18 69.59% 0.58 72.07% 73.21% 72.43% 0.78
ResNet-34 69.64% 0.51 72.97% 74.86% 73.65% 0.81
ResNet-50

Weighted κ

67.14% 0.58 71.17% 71.47% 71.20% 0.78

In an attempt to leverage the classification learning task, after choosing the best model, we

re-trained this version by adding some individual labelled tiles (n = 263) to the training set, to

guide model training with direct supervision of some tiles. In Table 7.6 (middle row) we can see

that, with this addition, all metrics increased, ending with an accuracy of 74.31% and a sensitivity

of 74.77%. As expected, by combining the selected tile of each epithelium area, that only has the

label of the correspondent bag, with tiles that have a particular labelled associated, the tile selection

process was improved.

Table 7.6: Performance of the classification model (ResNet-34) trained with the weighted κ loss
function and different supervision levels: tiles from annotated epitheliums (AE), annotated tiles
(AT) and tiles from labelled slides (LS).

Training data Accuracy QWK Sensitivity Precision F1-score AUC

AE 69.64% 0.51 72.97% 74.86% 73.65% 0.81
AE + AT 74.31% 0.65 74.77% 76.44% 74.98% 0.84
AE + AT + LS 73.78% 0.66 78.27% 78.38% 78.31% 0.85
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Lastly, to take advantage of the complete dataset, we re-trained the ResNet-34 also adding

bags of tiles (n = 1198) from the non-annotated slides, using the best epithelium segmentation

model (Table 7.6, last row). It is worth mentioning that, despite adding more data, we also add

more noise with the automatic epithelium segmentation and bags of tiles per slide. Nonetheless, the

model achieved improved results across all metrics, except the balanced accuracy. In particular,

sensitivity had a gain of 3.5%, with the model predicting right more cases from LSIL and HSIL

classes combined. When comparing the confusion matrices of both versions (Table 7.7), we can

conclude that the version trained with the non-annotated data (b) misidentified two more HSIL

cases and one more normal case. On the other hand, it got seven more LSIL right. However, since

HSIL and normal classes are less represented, such misclassifications are more penalised when

computing the balanced accuracy.

Table 7.7: Validation set confusion matrices.

(a) AE+AT

Actual class
NNeo LSIL HSIL

NNeo 10 7 0

LSIL 3 45 5

Pr
ed

ic
te

d

HSIL 2 11 28

(b) AE+AT+LS

Actual class
NNeo LSIL HSIL

NNeo 9 5 0

LSIL 4 52 7

Pr
ed

ic
te

d

HSIL 2 6 26

7.2.3 Complete framework

Finally, we tested the complete framework with an independent set of slides (n = 600), using the

best epithelium segmentation model (UNet with RGB channels) and the overall best classification

model (ResNet-34 trained with the complete dataset). Here, the output of the segmentation model is

used, not only for ROI identification but also to classify slides as "others". Since these samples don’t

have epithelium areas, if the segmentation model result is empty, then the slide is automatically

classified accordingly.

From Table 7.8, it is possible to verify that the segmentation model only misses ROIs in

two LSIL cases. However, in the non-representative cases, the model has identified 28 cases

correctly out of 66, meaning a balanced accuracy of 71.03% for identifying negative and positive

samples. From the over-segmented cases, the classification model does not recognise any as HSIL

and classifies most of them as non-neoplastic. Thus, the overall framework achieves a balanced

accuracy of 63.75%, precision of 71.02%, sensitivity 68.67% and an F1-score of 68.18%.

When excluding the "others" class, the classification model achieved a balanced accuracy of

71.07%, a QWK of 0.67, precision of 74.15%, sensitivity of 72.18%, F1-score of 72.11% and

a mean AUC of 0.85%, being in line with the validation performance reported in Section 7.2.2

Therefore, we can conclude that the errors of the segmentation model still have some impact
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Table 7.8: Test set (n = 600) confusion matrix using the complete framework, with all classes.

Actual class
NNeo LSIL HSIL "others"

NNeo 126 21 0 22

LSIL 73 202 24 16

HSIL 5 25 56 0Pr
ed

ic
te

d

"others" 0 2 0 28

on the overall performance of the model, especially on precision and sensitivity. In fact, if the

segmentation model misses some relevant area, the classifier would be misled.

7.3 Summary

In this chapter, we propose a weakly-supervised methodology for grading cervical dysplasia (non-

neoplastic, LSIL, HSIL and non-representative cases), using different levels of training supervision,

in an effort to gather a bigger dataset without the need of having all samples fully annotated. With

the first step of segmentation, we can identify ROI to focus on for the classification, allowing the

use of non-annotated WSI for training, and the automatic diagnosis of unseen cases. Then, the

classifier is capable of diagnosing the grade of dysplasia in tiles from those areas.

Nonetheless, despite the overall acceptable performance of the complete framework on the test

set, further efforts should focus on the improvement of both parts individually, but also on how to

better link them. In fact, from the reported results we can conclude that there is some noise being

propagated from the segmentation model to the classifier, weakening it. In that sense, an end-to-end

training framework can possibly improve the results of the segmentation model by penalising them

based on classification quality. Moreover, more information on the heterogeneity of epithelium

types within a WSI could be used as an extra layer of weak supervision to guide tile selection.
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Breast cancer
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Chapter 8

Breast cancer insights

8.1 Epidemiology

Breast Cancer (BCa) is the most commonly diagnosed cancer among women worldwide, affecting

over 2 million women every year, representing about 25% of all oncological diagnoses in this

gender. Moreover, BCa is the second leading cause (15%) of cancer death among women [124, 125].

Although BCa is more prevalent among women, it can also occur in men. During the most recent

years, despite its incidence trends having increased, the mortality rate has significantly decreased,

due to earlier detection and better treatment strategies [126].

8.2 BCa diagnosis & sub-typing

Breast cancer is considered a heterogeneous disease since its different types are characterised by

variable histopathological, biological and genetic features that, in fact, result in different clinical

outcomes and prognosis, as well as different responses to therapy [127]. Thus, concerning the

therapeutic decision-making process, accurate classification of BCa into relevant sub-types comes

out as an important task [128].

Histologically, BCa is classified accordingly to the tissue type that is affected. The most

common histological BCa type is carcinoma, which starts in the cells of the breast lobules or ducts.

Breast carcinomas are then classified as lobular/ductal carcinoma in situ or invasive lobular/ductal

carcinoma (Figure 8.1):

• Lobular Carcinoma in Situ (LCIS): cancer grows in the milk-producing glands of the breast

(lobules) but does not grow through their walls. Typically, it does not become invasive, but

increases the risk of developing an invasive BCa;

• Ductal Carcinoma in Situ (DCIS): non-invasive or pre-invasive disease in which the cancerous

cells grow among the duct but do not spread through its walls into the nearby breast tissue.

Over time, DCIS may spread out of the duct and result in possible metastases;
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• Invasive Lobular Carcinoma (ILC): starts in the lobules but, unlike LCIS, it can spread to

other organs. It may be harder to detect and, when compared to other types of invasive

carcinomas, it might increase the probability of developing cancer in both breasts;

• Invasive Ductal Carcinoma (IDC): starts in the milk ducts, breaks through their walls and

grows into the nearby breast tissues. It also may be able to spread to other parts of the

body, via the lymphatic and blood vessels. It is the most common type of invasive breast

carcinomas [129].

Figure 8.1: Breast cancer histological types (adapted from Terese Winslow LLC 1).

Despite more than 80% of the diagnosed BCa are histologically classified as IDC, these cancers

are biologically diverse and distinct, which implies a refined classification based on immunohisto-

chemistry (IHC) markers, such as Estrogen Receptors (ER), Progesterone Receptors (PR), Human

Epidermal growth factor Receptor - type 2 (HER2), protein Ki67 and basal markers [130]. Thus,

breast tumours are classified into 5 intrinsic molecular subtypes (Table 8.1):

• Luminal A: are ER/PR positive, HER2 negative and have low levels of Ki67. This type is

low-grade cancer and tends to grow slowly, having the best prognosis;

• Luminal B: are ER/PR positive, either HER2 positive or negative and have high levels of

Ki67. Luminal B cancers generally grow slightly faster than the luminal A sub-type and have

a slightly worse prognosis;

• Triple-negative: are ER, PR and HER2 negative. These tumours tend to occur more in

younger women, are often aggressive and have a poorer prognosis than the luminal sub-types.

However, they can be successfully treated;

1https://www.teresewinslow.com/breast/89t264tvm8t2fx014uof1ajok0twll
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• HER2-enriched: are ER/PR negative, and HER2 positive. These cancers tend to grow

faster than luminal A and B, and usually have a worse prognosis. However, they are often

successfully treated with targeted therapies;

• Normal-like: similar to luminal A, with ER/PR positive, HER2 negative but with high levels

of Ki67. Despite having a good prognosis, it is slightly worse than luminal A sub-type [131].

Table 8.1: Breast cancer molecular sub-types IHC profile and prognosis (adapted from [132]).

IHC markers
Proliferation Outcome

HER2 ER PR Ki67 basal

Luminal A - + + low - low good

Luminal B - or + + + high - high
intermediate/

poor

Triple negative - - - high + high poor

HER2-enriched + - -
low/

intermediate
-/+ high poor

Normal-like - + + high -/+
low/

intermediate
intermediate

The analysis of tissue sections of cancer specimens (Figure 8.2) obtained by preoperative

biopsy, commonly starts with haematoxylin and eosin (H&E) staining, which is usually followed by

immunohistochemistry (IHC), a more advanced staining technique, used to highlight the presence

of specific protein receptors [3]. In fact, according to the current clinical guidelines [133] for

breast cancer management, Human epidermal growth factor receptor 2 (HER2) quantification in

immunohistochemistry (IHC) must be routinely tested in all patients with invasive BCa, recurrence

cases, and metastatic tumours. The overexpression of this receptor is observed in 10%–20%[133]

of BCa cases and has been associated with aggressive clinical behaviour and poor prognosis [134].

However, patients diagnosed with HER2-positive BCa have a better response to targeted therapies

and consequent improvements in healing and overall survival, which emphasises the importance of

an accurate evaluation of HER2 status [135, 134].

The current guidelines [137], revised by the American Society of Clinical Oncology/College of

American Pathologists (ASCO/CAP), in 2018, indicate the following criteria for HER2 scoring:

• IHC 0+: no staining or incomplete membrane staining in 10% of tumour cells or less;

• IHC 1+: incomplete, barely perceptible membrane staining in > 10% of tumour cells;

• IHC 2+: weak to moderate complete membrane staining in > 10% of tumour cells;

• IHC 3+: circumferential, complete, intense membrane staining in > 10% of tumour cells.
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Moreover, cases scoring 0+ or 1+ are classified as HER2 negative, while cases with a score of

3+ are classified as HER2 positive. Cases with score 2+ are classified as equivocal and are further

assessed by in situ hybridisation (ISH), to test for gene amplification (see Figure 8.2). In these

cases, the HER2 status is given by the ISH result [137].

8.3 Computational pathology in BCa

Similarly to colorectal and cervical cancers, also the breast digital pathology field has opened many

research opportunities in computer vision, as reviewed by Robertson et al. [2], with the analysis of

digitised slides being used, for example, for mitosis detection [138–140], tissue classification [141–

143], cancer grading [17, 144, 145] or histological sub-type classification [146, 19, 147]. However,

only recently has research focused on predicting molecular markers directly on H&E-stained

images and thus, the particular task of predicting HER2 status on H&E stained slides has not yet

been extensively addressed in the literature. To the extent of our knowledge, the work proposed in

the next chapter was one of the first studies on this purpose, and the first one developed on WSI.

Despite some prior works on tissue micro-arrays (TMA), all the remaining were published after the

HEROHE challenge [148], at ECDP 2020, that inspired the work presented in this thesis.

8.3.1 HER2 overexpression classification on H&E-stained slides

One of the first works on the feasibility of using digitised H&E–stained BCa slides for the prediction

of molecular expression of biomarkers, was developed by Shamei et al. [149], in 2019. Particularly

for the HER2 prediction, the authors used data from 4944 patients, which includes 3 H&E-stained

TMA images and 1 IHC-stained TMA image per patient, in total 12789 TMA images. Each H&E

TMA image is divided into non-overlapping tiles of 512×512 pixels, from which local features are

extracted with a ResNet network. Then, all the features are averaged across all patches and across

all the TMA images belonging to a patient, to obtain a final patient feature vector that is fed to a

logistic regression classifier. The proposed approach achieved an AUC of 0.74, with an accuracy

of 68%. Also using TMA, Rawat et al. [150] hypothesised that learning H&E morphological

differences between patients could be seen and "fingerprints" to predict ER, PR, and HER2 status.

In this sense, they proposed the usage of the ResNet-34 for the "fingerprints" extraction (combined

with a cGAN for stain normalisation) from tiles with 224×224 pixels, that are used in a custom

Pre-operative
(biopsy)
specimen

H&E staining
Morphology assessment

IHC HER2 testing
Staining for protein markers detection,
for HER2 overexpression evaluation

In Situ Hybridization
(ISH) testing

Gene amplification detection

if IHC score 2+

if invasive BCa
recurrence or

metastatic tumor

Figure 8.2: Schema of the process of BCa HER2 evaluation, involving H&E staining, IHC testing
and, in specific cases, ISH testing. The proposed method aims to evaluate HER2 using only H&E
stained slide images. Image examples were adapted from [136].
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tile classifier, and which predictions are aggregated by average. They tested this framework in

124 TCGA samples and in 487 samples from the Australian Breast Cancer Tissue Bank (ABCTB),

achieving an AUC of 0.71 and 0.79, respectively, for the HER2+ status prediction.

In 2020, following the participation in the HEROHE challenge mentioned above, Barbera et

al. [151] proposed an approach based on a cascade of DL classifiers and MIL. Firstly, using the

BACH Challenge dataset, they trained a classifier, based on the DenseNet-201 architecture, to

distinguish tiles of 512×512 pixels into normal, benign, in situ carcinoma and invasive carcinoma

tissue. Then, using the tumour tiles identified from the slides of the HEROHE challenge (n = 360),

the authors trained a ResNet classifier to predict the HER2 status in all tiles, that are finally

aggregated, by majority-voting, for the slide-level prediction. In the challenge test set, with 150

slides, the proposed model attained an accuracy of 68.7%, precision of 57.0%, recall of 88.3% and

a F1-score of 0.69%.

Last year, Gamble et al. [152] developed individual learning systems to predict the ER, PR

and HER2 status for both H%E tiles and WSI. Their work used annotated data from 3 different

institutions, with reported AUC of 0.808 (95% confidence interval (CI): 0.802–0.813) and 0.60

(95%CI: 0.56–0.64) for HER2 predictions on the tile and slide levels, respectively. To develop the

patch-level classifier, the authors acquired paired and aligned H&E and IHC slides, annotated by 16

expert pathologists, from which they randomly sample tiles of 512×512 pixels, to be categorised

as biomarker positive, biomarker and “non-tumour”, using an Inception-V3 network. Then, the

slide-level prediction is based on features from the tiles predictions distribution. The proposed

model was also tested on a subset of 870 slides from the TCGA dataset, achieving an AUC of 0.58

(95% CI: 0.53-0.63). Also in 2021, Bychkov et al. [153] proposed a model trained on TMA images

and tested on WSI. The authors trained a tile classifier based on the "squeeze-and-excitation"

network on TMA images and for inference on slides, they pulled the tile level scores by taking a

median value within each WSI. The authors assessed the proposed model in two test sets: first on

354 TMA images and finally on an independent set of 712 WSI, with a reported AUC of 0.70 (95%

CI: 0.63–0.77) and 0.67 (95% CI, 0.62–0.71), respectively.

In 2022, Farahmand et al. [154] trained an Inception-v3 classifier on non-overlapping tiles of

512×512 pixels of 188 H&E breast slides, manually annotated for tumour ROIs, to differentiate

HER2 positive and negative areas. Then, the slide-level probabilities were computed by averaging

the output of the tile classifier and final diagnosis was decided upon a 0.5 cutoff threshold. The

proposed classifier achieved an AUC of 0.90 in cross-validation with a private dataset, and 0.81

on a set of 187 slides from the TCGA collection. More recently, Lu et al. [155] proposed a

novel graph neural network (GNN) model, called SlideGraph+, to predict HER2 status directly

from H&E-stained breast slides. The network was trained and tested on 709 TCGA slides, with

cross-validtaion, and further tested on two other, the HER2Contest challenge dataset (HER2SC)

and a private dataset, with a reported AUC of 0.75, 0.78 and 0.80, respectively, when differentiating

unequivocal negatives (0+) and positive (3+) cases. Instead of extracting small tiles from the slide,

the pipeline is based on a graph at the entire WSI-level, giving not only the overall prediction but

also showing the most important image regions.
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8.4 Summary

Breast cancer is a heterogeneous disease, affecting many women all over the world each year but,

nowadays, despite the increased incidence, it has a decreased mortality. In fact, its earlier detection

is of utmost importance for an efficient treatment. Moreover, an accurate disease sub-typing, staging

and grading, assessed on histopathology data, is also vital for tailored clinical management, towards

cancer elimination and quality of life improvement. Particularly for disease prognosis and treatment

planning, assessing IHC markers is of utmost importance, with the HER2 status being associated

with disease aggressiveness. Thus, a preliminary assessment of this marker expression on standard

H&E samples could be a valuable indicator before IHC testing, enabling earlier identification of

more severe cases.
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HER2 profile from H&E breast slides
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At the moment, besides very well-differentiated tumours, with low nuclear/cytoplasm area

ratio, which typically are hormonal driven and therefore generally not positive for HER2, there

are no morphological features on H&E slides that allow a reliable prediction of the HER2 status.

Therefore, the standard procedure is to perform an additional immunohistochemical study, with

an additional molecular study in case of equivocal results. However, despite the efficiency of IHC

and ISH, the additional cost and time spent on these tests might be avoided if all the information

needed to infer the HER2 status could be extracted only from H&E whole slide images (WSI),

as a preliminary indication of the IHC result. Thus, in this chapter we propose a method using a

convolutional neural network (CNN), inspired by multiple-instance learning (MIL), to automatically

identify the HER2 status on BCa H&E stained slides. To deal with the sheer dimensions of the

slides, tiles are extracted from the original images and separately processed by the model, which

learns to aggregate the individual tile predictions into a single, image-wide label. Moreover, to

introduce some prior knowledge about the morphology of tissue structures into the model, the CNN

has been pretrained with HER2 IHC-stained slides.
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9.1 Methodology

The proposed method (Figure 9.1) comprises a convolutional neural network (CNN), which is

pretrained for the task of HER2 scoring of tiles extracted from IHC stained slides. The pretrained

parameters are then transferred to the task of HER2 status prediction on H&E staining slide tiles,

to provide the network with some knowledge of the tissue structures’ appearance. Individual tile

scores are then combined to obtain a single label for the respective slide. The data preprocessing

methodology and the implemented networks are described below.

Tile0 HER2 Score

Tilen HER2 Score

Pretrained
IHC Weights

. . .Preprocessing CNN

Tile0

Tilen

. . . MLP
Tile Scores
Sorting and
Selection

Slide
HER2 status

H&E Stained
Slide

Figure 9.1: The proposed approach for weakly-supervised HER2 status classification on BCa H&E
stained slides.

9.1.1 IHC-stained slides pre-processing

For the IHC stained slides of classes 2+ and 3+, the preprocessing begins with automatic tissue

segmentation with Otsu’s thresholding on the saturation (S) channel of the HSV colour space,

obtaining the regions with more intense staining, that correspond to the HER overexpression areas.

For slides of classes 0+ and 1+, the segmentation consists of the simple removal of pixels with

the greatest HSV value (V) intensity, corresponding to background pixels, which do not contain

essential information to the problem. These processes, which are performed at 32× downsampled

slides, return the masks used in tile extraction.

Tiles with size 256 × 256 are extracted from the slide with original dimensions (without

downsampling), provided they are completely within the mask region. These tiles are converted

from RGB to HSL colour space, of which only the lightness (L) channel is used. Each tile inherits

the class from the respective slide (examples in Figure 9.2a–d), turning the learning task into a

weakly-supervised problem.

9.1.2 H&E-stained slides pre-processing

According to the ASCO/CAP guidelines for IHC evaluation, the diagnosis is based only on the

tumour region of the slides. Hence, the preprocessing of H&E stained slides begins with an

automatic invasive tissue segmentation with the HASHI method [158, 159], which consists of an

adaptive gradient-based sampling approach that iteratively refines an initial coarse invasive BCa

probability map, from CNN inference. The algorithm begins with a WSI as input, sampled in

100 tiles, each classified using a CNN-trained model, to obtain the probability of invasive BCa

presence. By interpolating each tile probability, a heatmap is generated for the entire WSI. Then, the
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(a) (b) (c) (d) (e)

Figure 9.2: Tile examples extracted from IHC 0+ (a), IHC 1+ (b), IHC 2+ (c), IHC 3+ (d), H&E
(e) slides. Tiles from IHC 2+ and 3+ and H&E slides were obtained by Otsu’s thresholding and
the remaining were obtained by simply removing the pixels with background value. The IHC tiles
were obtained from slides of the HER2SC dataset [156] and the H&E tile was obtained from a slide
of the BRCA dataset [91, 157].

gradient of the map is calculated and used to prioritise the sampling selection on the next iteration.

The process is repeated during 20 iterations [158]. The method was implemented in the images

referred to by Cruz-Roa et al. [158] as the test set, using the original magnification and extracting

squared 512×512 tiles. Moreover, to exclude eventual small background zones included in HASHI

segmentation, this mask region was intersected with the segmentation using Otsu’s thresholding

on the saturation (S) channel of the HSV colour space. The final segmentation mask was then

used to generate H&E tiles (example in Figure 9.2e), extracted and processed accordingly to the

methodology described for IHC slides. The number of tiles per slide varies according to the extent

of the tissue region.

9.1.3 CNN for IHC tile scoring

The CNN architecture (Figure 9.3) consists of four convolutional layers (16, 32, 64 and 128 filters,

respectively, with ReLU activation). The first layer has 5×5 square kernels, while the remaining

have 3×3 square kernels. Each convolutional layer is followed by one pooling layer (a max-pooling

function without overlap, with kernel 2× 2). The network is topped with three fully-connected

layers, with 1024, 256, and 4 units, respectively. The first two have ReLU activation, while the

third is followed by softmax activation for the output of probabilities for each class.

9.1.4 CNN for H&E-stained slide classification

The network parameters pretrained with IHC stained slides were used as initial network weights

for HER2 status classification on H&E stained slides. It is worth mentioning that IHC data is

only used for the network pretrain, and not during the inference/test phase. To achieve a single

prediction per tile, instead of four (as it was initially trained for on the IHC setting), a soft-argmax

activation [160, 161] replaces the softmax activation, following the equation

soft-argmax(s) = ∑
i

softmax(β si)i, (9.1)
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Figure 9.3: Architecture of the implemented convolutional neural network.

where β is an adjustment factor which controls the range of the probability map given by the

softmax, s is the tile score array, and i is the index that corresponds to each class.

Having a single value per tile enables the easy sorting of tiles, which is performed before the

aggregation into a single HER2 label. With the HER2 scores of each tile, output by the soft-argmax

activation, tiles are sorted from 3+ to 0+. Then, the 15% highest scores are selected to serve as

input to the aggregation process. This percentage was chosen to limit the information given to the

aggregation network, while still including and barely exceeding the reference 10% of tumour area

considered in the HER2 scoring guidelines.

The score aggregation is performed by a multilayer perceptron (MLP), composed of four layers,

with 256, 128, 64, and 2 neurons, respectively. All layers are followed by ReLU activation, except

the last layer, which is followed by softmax activation. Since the input dimension M of the MLP is

fixed (we set M = 300 in our experimental analysis, to limit memory cost), for images where 15%

of the number of tiles exceeds M, we downsample to 300 using evenly distributed tile selection.

In cases where 15% of the number of tiles is lower than M, tiles are extracted with overlap, to

guarantee that M tiles can be selected. The MLP will process these 300 HER2 scores and output a

single HER2 status label for the respective slide.

9.1.5 Training Details

The hyperparameters used during training were empirically set to maximise performance. The

CNN model for IHC tile scoring was randomly initialised and trained using the Adaptive Moment

Estimation (Adam) [94] optimiser (learning rate of 1× 10−5), to minimise a cross-entropy loss

function, during 200 epochs, with mini-batches of 128 tiles. The soft-argmax used a parameter

β = 1000. The aggregation MLP was trained using the Adam optimiser, with a learning rate of

10−5 for 150 epochs and mini-batches of 1 WSI (consisting of soft-argmax scores of the respective

300 tiles), saving the best considering validation accuracy.
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9.2 Datasets

The dataset is composed of subsets of WSI from two public datasets: the HER2 Scoring Contest

(HER2SC) training set [156] and the TCGA-TCIA-BRCA (BRCA) collection [91, 157]. The

HER2SC training set (the subset with available labelling) comprises WSI of sections of 52 cases of

invasive BCa stained with both IHC and H&E (example in Figure 9.4a,b). From this set, all IHC

and H&E stained slides were used, except 4 H&E excluded because of manual ink markings. The

subset from the BRCA dataset includes 54 H&E stained WSI (example in Figure 9.4c). All slides

have the same original resolution and are weakly annotated with HER2 status (negative/positive)

and score (0+, 1+, 2+, 3+), obtained from the corresponding histopathological reports.

The IHC stained slides were manually segmented into regions of interest (ROI), using the

Sedeen Viewer software [79]. However, it is noteworthy that these slides were only used for training

and, thus this step is not needed for testing.

The training and validation sets, used for model parameter tuning and optimisation, have 40 and

12 IHC slides, respectively. A total of 7591 tiles per class have been extracted for training (30,364

tiles total) and 624 tiles per class extracted for validation (2496 tiles total), to keep a class balance.

(a) (b) (c)

Figure 9.4: Image examples from used datasets: HER2SC [156] IHC stained slides (a),
HER2SC [156] H&E stained slides (b), BRCA [91, 157] H&E stained slides (c). The tile ex-
traction was solely done on tissue, here denoted by the delineated regions.

9.3 Experimental results and discussion

9.3.1 Individual IHC tile scoring results

After training, the model offered 76.8% accuracy (see Table 9.1). This indicates that the model was

able to discriminate against the IHC tiles between the four classes adequately. This model was

subsequently transferred for HER2 scoring in tiles from H&E slides.

9.3.2 Invasive tumour tissue segmentation

Tiles from H&E WSI are extracted from the intersection area between the HASHI-based invasive

tumour segmentation and the Otsu-based tissue segmentation. The HASHI segmentation method

was trained on the BRCA data reported as the test set by Cruz-Roa et al. [158], with 179 WSI on
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Table 9.1: Confusion matrix of the CNN for HER2 scoring in IHC tiles.

Actual class
0 1 2 3

0 490 132 2 0
1 176 384 64 0
2 45 159 419 1Pr
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3 0 0 1 623

their original magnification. The results were comparable to the original paper (see examples in

Figure 9.4) and were further evaluated by a pathology specialist, who confirmed the adequacy of

the invasive tumour segmentation results.

9.3.3 Slide Scoring

On the HER2SC test set, the method achieved an F1-score of 86.7% and a weighted accuracy of

83.3% ( Table 9.2). Despite the small size of the test set, the proposed method was able to correctly

classify all positive WSI and only misclassify one negative sample. In this context, one might

consider this a desirable behaviour, as false positives are less impactful than false negatives.

Table 9.2: Evaluation of the proposed method on the HER2SC and BRCA test sets.

Accuracy F1-Score Precision Recall

HER2SC 83.3% 86.7% 89.6% 87.5%
BRCA 53.8% 21.5% 81.2% 31.5%

When tested on the BRCA test set, this method achieved an F1-score of 21.5% and a weighted

accuracy of 53.8% (see Table 9.2). The method retains the behaviour presented in HER2SC,

preferring to err on the side of false positives than the alternative. On the other hand, the performance

metrics on BRCA differ considerably from those obtained on HER2SC. While the method was

trained on HER2SC data, which is expected similar to the test data, the WSI of the BRCA dataset

presents some notable differences. These slides have a greater extent of tissue, which generates

more tiles, impacting the distribution of the scores, which may influence the method’s behaviour.

The evaluation results in single-database (HER2SC) and cross-database (BRCA) settings show

the potential of the proposed method in standard and more challenging situations. However, the

method appears to be dataset-dependent: it performed much better in conditions similar to the

training. This should be addressed with additional efforts regarding domain adaptation.

The other shortcomings of the method appear to be related to the invasive tumour tissue

segmentation and the individual tile scoring network, which could be improved with additional data

and more accurate ground truth information. With these additional efforts, the proposed method

could offer robust weakly-supervised WSI HER2 classification without IHC information.
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9.3.4 Ablation study

Considering the lack of literature methods, to perform a benchmark, an ablation study was per-

formed to confirm the capabilities of the proposed method. Experiments were conducted without

IHC individual tile scoring CNN initialisation, and using alternative statistical methods for individ-

ual tile score aggregation instead of MLP (median and mean), as can be seen in Tables 9.3 and 9.4.

The results show that these alternatives are, in most settings, less adequate for the task at hand.

Table 9.3: Results on the HER2SC test set.

Method Accuracy F1-Score Precision Recall

MLP Aggregation:

proposed method 83.3% 86.7% 89.6% 87.5%

w/out pretrained CNN weights 62.5% 48.1% 39.1% 62.5%

Median Aggregation:

w/pretrained CNN weights 50.0% 43.3% 78.6% 50.0%

w/out pretrained CNN weights 62.5% 48.1% 39.1% 62.5%

Mean Aggregation:

w/pretrained CNN weights 50.0% 43.3% 78.6% 50.0%

w/out pretrained CNN weights 62.5% 48.1% 39.1% 62.5%

Table 9.4: Results on the BRCA test set.

Method Accuracy F1-Score Precision Recall

MLP Aggregation:

proposed method 53.3% 21.5% 81.2% 31.5%

w/out pretrained CNN weights 50.0% 60.3% 51.8% 72%

Median Aggregation:

w/pretrained CNN weights 50.0% 12.3% 7.80% 28.0%

w/out pretrained CNN weights 52.2% 63.5% 66.5% 72.0%

Mean Aggregation:

w/pretrained CNN weights 50.0% 12.3% 7.80% 28.0%

w/out pretrained CNN weights 52.2% 63.5% 66.5% 72.0%

It is noteworthy that the median and mean-based aggregation are followed by a conversion

to binary classes (0+ and 1+ are considered negative, while 2+ and 3+ are considered positive)
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since tiles have four possible labels. According to the guidelines, 2+ cases can be either negative

or positive, but in an uncertain diagnosis scenario, it is preferable to classify them as positive.

9.4 Summary

In this chapter, a framework is proposed for the weakly supervised classification of HER2 over-

expression status on H&E stained BCa WSI. The proposed approach integrates a CNN trained

for HER2 scoring of individual H&E-stained slide tiles, initialised with the network parameters

pretrained with data from IHC-stained images. The objective of this initialisation is to transfer

some domain knowledge to the final training. The individual scores are aggregated on a single

prediction per slide, returning the HER2 status label.

Tested with the BRCA data subset, the proposed method attained suitable performance. These

preliminary results indicate that it is possible to accurately infer BCa HER2 status solely from

H&E-stained slides. The results of an ablation study suggest that the proposed method with MLP

tile score aggregation is more promising than simpler aggregation methods (mean or median).

Despite these results, further efforts should be devoted to performance improvements in the

proposed task of diagnosing an IHC marker directly on H&E. Particularly for BCa HER2, firstly,

the classifier and the aggregator could be integrated into a single optimisation process. On the other

hand, the aggregation of individual scores could incorporate information on tile location, to take

spatial consistency into account. Finally, the knowledge embedded in the networks through the

pre-trained parameters could be better seized if input H&E tiles could be previously converted into

IHC, using generative adversarial models (GANs), for example.
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Chapter 10

Conclusion

More and more cancer cases and precursor lesions from screening programs are arriving at surgical

pathology laboratories, significantly increasing the pathologists’ workload. An early diagnosis

and treatment promote an optimistic prognosis, so, a fast and accurate diagnosis is mandatory.

Additionally, pathologists are experiencing added pressure as personalised therapeutics require a

more detailed histological evaluation and precise biomarker assessment, while, at the same time,

there are gradually fewer trained pathology specialists in the world [8]. Moreover, as previously

described, grading and diagnosing depend on the pathologists’ knowledge and experience, which

means there is inevitable subjectivity in this process.

Using AI technology could help to automatically classify and diagnose pathological samples,

improving diagnostic accuracy, while reducing time and resources [43]. In fact, AI can take up

the effort of laborious, tedious tasks, leaving time for pathologists to appraise the most relevant

lesions. For instance, it could help pathologists to prioritise high-risk samples, or could also be

used as a second opinion, to help to confirm a diagnosis. Additionally, there are now many studies

evaluating the value of AI solutions as prediction tools, in an attempt to be able to extrapolate

molecular features and predict survival and therapy response [162].

In sum, due to the workload increase and added difficulties for pathologists in recent years,

procedures will need to be revised and adapted in order to have the best balance between diag-

nostic/prognostic capacity and daily routine feasibility. Digital pathology, along with AI/CAD

solutions, will certainly help in this purpose.

10.1 Summary of contributions

This thesis addressed the problem of developing medical image diagnostic tools for digital pathology,

particularly for colorectal (Part II), cervical (Part III) and breast cancers (Part IV), without the need

for models’ full supervision. With the proposed setups, CAD systems can be developed without

the need for extensively annotated datasets, reducing the burden of annotation for pathologists,

and maintaining good performance, which is essential for the application in clinical practice. Its

outcomes have been published in international journals and conferences, taking advantage of
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collaborations with medical institutions, such as IMP Diagnostics and Champalimaud Foundation,

and also joint efforts with other members of the VCMI research group, at INESC TEC. These

collaborations enhanced the focus of the work, keeping the medical reasoning always present and

helping to bridge the machine learning challenges with the practical needs of the clinical side. The

contributions throughout this document are summarised as follows:

• a feasibility study on using partially annotated datasets to drive the development of CAD

systems for digital pathology, directly from WSI. This study was performed particularly for

CRC diagnosis, but can be generalised to other pathologies. This work served as the basis for

building one of the largest pathology datasets publicly available, with about 10,000 colorectal

H&E-stained slides;

• a semi-supervised learning approach to construct a novel system for CRC automatic diagnosis

on slides, with the capability to guide pathologists’ attention towards the most relevant tissue

areas within each WSI;

• an AI-based clinical software prototype for colorectal samples grading and tissue mapping,

developed as a server-side web application, together with a clinical validation of the last

proposed model;

• a weakly-supervised framework to grade dysplasia directly from cervical WSI, that firstly

identifies ROIs and then classifies them. In this approach, we propose a three-level annotation:

only slide labelling for most of the dataset, epithelium annotation in a subset of slides,

and identification of small areas within the annotated epithelium areas, that serve as both

epithelium labelling and individual tiles annotation;

• the first work on the classification of HER2 overexpression status on H&E-stained BCa

slides, without pixel-level annotations.

10.2 Final remarks & future work

In general, despite the growing popularity and availability of computational pathology works,

there are relatively few published works on diagnosis from WSI, and most of these are based on

relatively small and private datasets, which renders them fragile and makes direct comparisons not

so fair. Moreover, another issue has been largely ignored in digital pathology research: a developed

model should not be specific to scanning machine output or to particular laboratory configurations.

The broad knowledge acquired by the model during the training phase should not be wasted or

useless. It is then necessary that the models can either be directly generalised to other scanning

machines, or that a few samples of non-annotated WSIs are sufficient to fine-tune a model with

similar performance to the original.

From a computational point of view, the high dimensionality of pathology data probably remains

the biggest problem to solve. Images are too large to be fed to GPUs in their original dimensions,
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which is not easy to solve without either decomposing them into smaller parts (tiles), at the cost

of losing spatial context, or resizing them, at the cost of losing resolution, essential especially in

diagnostic tasks. For improved performance, attention mechanisms, multiclass frameworks and/or

multi-level approaches can be beneficial for models to learn to diagnose better, even if they don’t

see all the information at once.

From a clinical point of view, although achieving remarkable performance, medical applications

of DL-based methods have been severely criticised due to their natural black-box structure. In

fact, for these approaches to be used in practice, researchers must develop techniques to inform

pathologists about the spatial location that was most responsible for the diagnosis and to explain

the reasons for the prediction. The ultimate goal should be to create, not only robust but also

transparent systems that clinicians can trust and rely on.

In conclusion, despite the highlighted contributions, with state-of-the-art results in different

tasks, the construction of CAD systems for decision support in digital pathology is far from being

completely solved. In fact, computational pathology is still a young area, with many challenges to

solve, so machine learning models can effectively get closer to clinical applicability. However, this

doctoral project is, hopefully, a step forward in the path that is still left.
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