22 research outputs found

    A Generative Model for Parts-based Object Segmentation

    Get PDF
    The Shape Boltzmann Machine (SBM) [1] has recently been introduced as a stateof-the-art model of foreground/background object shape. We extend the SBM to account for the foreground object’s parts. Our new model, the Multinomial SBM (MSBM), can capture both local and global statistics of part shapes accurately. We combine the MSBM with an appearance model to form a fully generative model of images of objects. Parts-based object segmentations are obtained simply by performing probabilistic inference in the model. We apply the model to two challenging datasets which exhibit significant shape and appearance variability, and find that it obtains results that are comparable to the state-of-the-art. There has been significant focus in computer vision on object recognition and detection e.g. [2], but a strong desire remains to obtain richer descriptions of objects than just their bounding boxes. One such description is a parts-based object segmentation, in which an image is partitioned into multiple sets of pixels, each belonging to either a part of the object of interest, or its background. The significance of parts in computer vision has been recognized since the earliest days of th

    Improving Deep Representation Learning with Complex and Multimodal Data.

    Full text link
    Representation learning has emerged as a way to learn meaningful representation from data and made a breakthrough in many applications including visual object recognition, speech recognition, and text understanding. However, learning representation from complex high-dimensional sensory data is challenging since there exist many irrelevant factors of variation (e.g., data transformation, random noise). On the other hand, to build an end-to-end prediction system for structured output variables, one needs to incorporate probabilistic inference to properly model a mapping from single input to possible configurations of output variables. This thesis addresses limitations of current representation learning in two parts. The first part discusses efficient learning algorithms of invariant representation based on restricted Boltzmann machines (RBMs). Pointing out the difficulty of learning, we develop an efficient initialization method for sparse and convolutional RBMs. On top of that, we develop variants of RBM that learn representations invariant to data transformations such as translation, rotation, or scale variation by pooling the filter responses of input data after a transformation, or to irrelevant patterns such as random or structured noise, by jointly performing feature selection and feature learning. We demonstrate improved performance on visual object recognition and weakly supervised foreground object segmentation. The second part discusses conditional graphical models and learning frameworks for structured output variables using deep generative models as prior. For example, we combine the best properties of the CRF and the RBM to enforce both local and global (e.g., object shape) consistencies for visual object segmentation. Furthermore, we develop a deep conditional generative model of structured output variables, which is an end-to-end system trainable by backpropagation. We demonstrate the importance of global prior and probabilistic inference for visual object segmentation. Second, we develop a novel multimodal learning framework by casting the problem into structured output representation learning problems, where the output is one data modality to be predicted from the other modalities, and vice versa. We explain as to how our method could be more effective than maximum likelihood learning and demonstrate the state-of-the-art performance on visual-text and visual-only recognition tasks.PhDElectrical Engineering: SystemsUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/113549/1/kihyuks_1.pd

    Learning generative models of mid-level structure in natural images

    Get PDF
    Natural images arise from complicated processes involving many factors of variation. They reflect the wealth of shapes and appearances of objects in our three-dimensional world, but they are also affected by factors such as distortions due to perspective, occlusions, and illumination, giving rise to structure with regularities at many different levels. Prior knowledge about these regularities and suitable representations that allow efficient reasoning about the properties of a visual scene are important for many image processing and computer vision tasks. This thesis focuses on models of image structure at intermediate levels of complexity as required, for instance, for image inpainting or segmentation. It aims at developing generative, probabilistic models of this kind of structure, and, in particular, at devising strategies for learning such models in a largely unsupervised manner from data. One hallmark of natural images is that they can often be decomposed into regions with very different visual characteristics. The main approach of this thesis is therefore to represent images in terms of regions that are characterized by their shapes and appearances, and an image is then composed from many such regions. We explore approaches to learn about the appearance of regions, to learn about region shapes, and ways to combine several regions to form a full image. To achieve this goal, we make use of some ideas for unsupervised learning developed in the literature on models of low-level image structure and in the “deep learning” literature. These models are used as building blocks of more structured model formulations that incorporate additional prior knowledge of how images are formed. The thesis makes the following contributions: Firstly, we investigate a popular, MRF based prior of natural image structure, the Field-of Experts, with respect to its ability to model image textures, and propose an extended formulation that is considerably more successful at this task. This formulation gives rise to a fully parametric, translation-invariant probabilistic generative model of image textures. We illustrate how this model can be used as a component of a more comprehensive model of images comprising multiple textured regions. Secondly, we develop a model of region shape. This work is an extension of the “Masked Restricted Boltzmann Machine” proposed by Le Roux et al. (2011) and it allows explicit reasoning about the independent shapes and relative depths of occluding objects. We develop an inference and unsupervised learning scheme and demonstrate how this shape model, in combination with the masked RBM gives rise to a good model of natural image patches. Finally, we demonstrate how this model of region shape can be extended to model shapes in large images. The result is a generative model of large images which are formed by composition from many small, partially overlapping and occluding objects

    Complex-Valued Autoencoders for Object Discovery

    Get PDF
    Object-centric representations form the basis of human perception and enable us to reason about the world and to systematically generalize to new settings. Currently, most machine learning work on unsupervised object discovery focuses on slot-based approaches, which explicitly separate the latent representations of individual objects. While the result is easily interpretable, it usually requires the design of involved architectures. In contrast to this, we propose a distributed approach to object-centric representations: the Complex AutoEncoder. Following a coding scheme theorized to underlie object representations in biological neurons, its complex-valued activations represent two messages: their magnitudes express the presence of a feature, while the relative phase differences between neurons express which features should be bound together to create joint object representations. We show that this simple and efficient approach achieves better reconstruction performance than an equivalent real-valued autoencoder on simple multi-object datasets. Additionally, we show that it achieves competitive unsupervised object discovery performance to a SlotAttention model on two datasets, and manages to disentangle objects in a third dataset where SlotAttention fails - all while being 7-70 times faster to train

    Holistic interpretation of visual data based on topology:semantic segmentation of architectural facades

    Get PDF
    The work presented in this dissertation is a step towards effectively incorporating contextual knowledge in the task of semantic segmentation. To date, the use of context has been confined to the genre of the scene with a few exceptions in the field. Research has been directed towards enhancing appearance descriptors. While this is unarguably important, recent studies show that computer vision has reached a near-human level of performance in relying on these descriptors when objects have stable distinctive surface properties and in proper imaging conditions. When these conditions are not met, humans exploit their knowledge about the intrinsic geometric layout of the scene to make local decisions. Computer vision lags behind when it comes to this asset. For this reason, we aim to bridge the gap by presenting algorithms for semantic segmentation of building facades making use of scene topological aspects. We provide a classification scheme to carry out segmentation and recognition simultaneously.The algorithm is able to solve a single optimization function and yield a semantic interpretation of facades, relying on the modeling power of probabilistic graphs and efficient discrete combinatorial optimization tools. We tackle the same problem of semantic facade segmentation with the neural network approach.We attain accuracy figures that are on-par with the state-of-the-art in a fully automated pipeline.Starting from pixelwise classifications obtained via Convolutional Neural Networks (CNN). These are then structurally validated through a cascade of Restricted Boltzmann Machines (RBM) and Multi-Layer Perceptron (MLP) that regenerates the most likely layout. In the domain of architectural modeling, there is geometric multi-model fitting. We introduce a novel guided sampling algorithm based on Minimum Spanning Trees (MST), which surpasses other propagation techniques in terms of robustness to noise. We make a number of additional contributions such as measure of model deviation which captures variations among fitted models

    Top-Down Selection in Convolutional Neural Networks

    Get PDF
    Feedforward information processing fills the role of hierarchical feature encoding, transformation, reduction, and abstraction in a bottom-up manner. This paradigm of information processing is sufficient for task requirements that are satisfied in the one-shot rapid traversal of sensory information through the visual hierarchy. However, some tasks demand higher-order information processing using short-term recurrent, long-range feedback, or other processes. The predictive, corrective, and modulatory information processing in top-down fashion complement the feedforward pass to fulfill many complex task requirements. Convolutional neural networks have recently been successful in addressing some aspects of the feedforward processing. However, the role of top-down processing in such models has not yet been fully understood. We propose a top-down selection framework for convolutional neural networks to address the selective and modulatory nature of top-down processing in vision systems. We examine various aspects of the proposed model in different experimental settings such as object localization, object segmentation, task priming, compact neural representation, and contextual interference reduction. We test the hypothesis that the proposed approach is capable of accomplishing hierarchical feature localization according to task cuing. Additionally, feature modulation using the proposed approach is tested for demanding tasks such as segmentation and iterative parameter fine-tuning. Moreover, the top-down attentional traces are harnessed to enable a more compact neural representation. The experimental achievements support the practical complementary role of the top-down selection mechanisms to the bottom-up feature encoding routines

    Generative probabilistic models for object segmentation

    Get PDF
    One of the long-standing open problems in machine vision has been the task of ‘object segmentation’, in which an image is partitioned into two sets of pixels: those that belong to the object of interest, and those that do not. A closely related task is that of ‘parts-based object segmentation’, where additionally each of the object’s pixels are labelled as belonging to one of several predetermined parts. There is broad agreement that segmentation is coupled to the task of object recognition. Knowledge of the object’s class can lead to more accurate segmentations, and in turn accurate segmentations can be used to obtain higher recognition rates. In this thesis we focus on one side of this relationship: given the object’s class and its bounding box, how accurately can we segment it? Segmentation is challenging primarily due to the huge amount of variability one sees in images of natural scenes. A large number of factors combine in complex ways to generate the pixel intensities that make up any given image. In this work we approach the problem by developing generative probabilistic models of the objects in question. Not only does this allow us to express notions of variability and uncertainty in a principled way, but also to separate the problems of model design and inference. The thesis makes the following contributions: First, we demonstrate an explicit probabilistic model of images of objects based on a latent Gaussian model of shape. This can be learned from images in an unsupervised fashion. Through experiments on a variety of datasets we demonstrate the advantages of explicitly modelling shape variability. We then focus on the task of constructing more accurate models of shape. We present a type of layered probabilistic model that we call a Shape Boltzmann Machine (SBM) for the task of modelling foreground/background (binary) and parts-based (categorical) shapes. We demonstrate that it constitutes the state-of-the-art and characterises a ‘strong’ model of shape, in that samples from the model look realistic and that it generalises to generate samples that differ from training examples. Finally, we demonstrate how the SBM can be used in conjunction with an appearance model to form a fully generative model of images of objects. We show how parts-based object segmentations can be obtained simply by performing probabilistic inference in this joint model. We apply the model to several challenging datasets and find that its performance is comparable to the state-of-the-art

    Visual Feature Learning

    Get PDF
    Categorization is a fundamental problem of many computer vision applications, e.g., image classification, pedestrian detection and face recognition. The robustness of a categorization system heavily relies on the quality of features, by which data are represented. The prior arts of feature extraction can be concluded in different levels, which, in a bottom up order, are low level features (e.g., pixels and gradients) and middle/high-level features (e.g., the BoW model and sparse coding). Low level features can be directly extracted from images or videos, while middle/high-level features are constructed upon low-level features, and are designed to enhance the capability of categorization systems based on different considerations (e.g., guaranteeing the domain-invariance and improving the discriminative power). This thesis focuses on the study of visual feature learning. Challenges that remain in designing visual features lie in intra-class variation, occlusions, illumination and view-point changes and insufficient prior knowledge. To address these challenges, I present several visual feature learning methods, where these methods cover the following sub-topics: (i) I start by introducing a segmentation-based object recognition system. (ii) When training data are insufficient, I seek data from other resources, which include images or videos in a different domain, actions captured from a different viewpoint and information in a different media form. In order to appropriately transfer such resources into the target categorization system, four transfer learning-based feature learning methods are presented in this section, where both cross-view, cross-domain and cross-modality scenarios are addressed accordingly. (iii) Finally, I present a random-forest based feature fusion method for multi-view action recognition

    ATTENTION-BASED CONVOLUTIONAL NEURAL NETWORK MODEL AND ITS COMBINATION WITH FEW-SHOT LEARNING FOR AUDIO CLASSIFICATION

    Get PDF
    Environmental sound and acoustic scene classification are crucial tasks in audio signal processing and audio pattern recognition. In recent years, deep learning methods such as convolutional neural networks (CNN), recurrent neural networks (RNN), and their com- binations, have achieved great success in such tasks. However, there are still numerous challenges left to be addressed in this domain. For example, in most cases, the sound events of interest will be present through only a portion of the entire audio clip, and the clip can also suffer from the background noise. Furthermore, in many application scenarios where the amount of labelled training data can be very limited, the application of few- shot learning methods especially prototypical networks have achieved great success. But metric learning methods such as prototypical networks often suffer from bad feature em- beddings of support samples or outliers, or may not perform well on noisy data. Therefore, the proposed work seeks to overcome the above limitations by introducing a multi-channel temporal attention-based CNN model and then introduce a hybrid attention module into the framework of prototypical networks. Additionally, a Π-model is integrated into our model to improve performance on noisy data, and a new time-frequency feature is explored. Var- ious experiments have shown that our proposed framework is capable of dealing with the above mentioned issues and providing promising results.Ph.D
    corecore