690 research outputs found

    Coloring half-planes and bottomless rectangles

    Get PDF
    We prove lower and upper bounds for the chromatic number of certain hypergraphs defined by geometric regions. This problem has close relations to conflict-free colorings. One of the most interesting type of regions to consider for this problem is that of the axis-parallel rectangles. We completely solve the problem for a special case of them, for bottomless rectangles. We also give an almost complete answer for half-planes and pose several open problems. Moreover we give efficient coloring algorithms

    Online and quasi-online colorings of wedges and intervals

    Get PDF
    We consider proper online colorings of hypergraphs defined by geometric regions. We prove that there is an online coloring algorithm that colors NN intervals of the real line using Θ(logN/k)\Theta(\log N/k) colors such that for every point pp, contained in at least kk intervals, not all the intervals containing pp have the same color. We also prove the corresponding result about online coloring a family of wedges (quadrants) in the plane that are the translates of a given fixed wedge. These results contrast the results of the first and third author showing that in the quasi-online setting 12 colors are enough to color wedges (independent of NN and kk). We also consider quasi-online coloring of intervals. In all cases we present efficient coloring algorithms

    Dynamic range and frequency assignment problems

    Get PDF

    Coloring Intersection Hypergraphs of Pseudo-Disks

    Get PDF
    We prove that the intersection hypergraph of a family of n pseudo-disks with respect to another family of pseudo-disks admits a proper coloring with 4 colors and a conflict-free coloring with O(log n) colors. Along the way we prove that the respective Delaunay-graph is planar. We also prove that the intersection hypergraph of a family of n regions with linear union complexity with respect to a family of pseudo-disks admits a proper coloring with constantly many colors and a conflict-free coloring with O(log n) colors. Our results serve as a common generalization and strengthening of many earlier results, including ones about proper and conflict-free coloring points with respect to pseudo-disks, coloring regions of linear union complexity with respect to points and coloring disks with respect to disks
    corecore