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Abstract
We prove that the intersection hypergraph of a family of n pseudo-disks with respect to another
family of pseudo-disks admits a proper coloring with 4 colors and a conflict-free coloring with
O(log n) colors. Along the way we prove that the respective Delaunay-graph is planar. We also
prove that the intersection hypergraph of a family of n regions with linear union complexity
with respect to a family of pseudo-disks admits a proper coloring with constantly many colors
and a conflict-free coloring with O(log n) colors. Our results serve as a common generalization
and strengthening of many earlier results, including ones about proper and conflict-free coloring
points with respect to pseudo-disks, coloring regions of linear union complexity with respect to
points and coloring disks with respect to disks.
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1 Introduction

Proper colorings of hypergraphs and graphs defined by geometric regions are studied ex-
tensively due to their connections to, among others, conflict-free colorings and to cover-
decomposability problems, both of which have real-life motivations in cellular networks,
scheduling, etc. For applications and history we refer to the surveys [20, 26]. Here we restrict
our attention to the (already long list of) results that directly precede our results. We discuss
further directions and connections to other problems in Section 4.
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52:2 Coloring Intersection Hypergraphs of Pseudo-Disks

Our central family of regions is the family of pseudo-disks. Families of pseudo-disks have
been regarded in many settings for a long time due to being the natural way of generalizing
disks while retaining many of their topological and combinatorial properties. Problems
regarded range from classic algorithmic questions like finding maximum size independent
(disjoint) subfamilies [5] to classical combinatorial geometric questions like the Erdős-Szekeres
problem [9]. Probably the most important pseudo-disk family is the family of homothets of
a convex region. Pseudo-disks are also central in the area of geometric hypergraph coloring
problems as we will see soon in this section.

Before we state our results and their precursors, we need to introduce some basic
definitions.

I Definition 1. Given a hypergraph H, a proper coloring of its vertices is a coloring in
which every hyperedge H of size at least 2 of H contains two differently colored vertices.

Throughout the paper hypergraphs can contain hyperedges of size at least 2 only, in
other words we do not allow (or automatically delete, when necessary) hyperedges of size 1.

I Definition 2. Given a hypergraph H, a conflict-free coloring of its vertices is a coloring
in which every hyperedge H contains a vertex whose color differs from the color of every
other vertex of H.

I Definition 3. Given a family B of regions and a family F of regions, the intersection
hypergraph of B with respect to (wrt. in short) F is the simple (that is, it has no
multiple edges) hypergraph I(B,F) which has a vertex vB corresponding to every B ∈ B
and for every F ∈ F it has a hyperedge H = {vB : B ∩ F 6= ∅} (if this set has size at least
two) which corresponds to F . The Delaunay-graph of B wrt. F is the graph on the same
vertex set containing only the hyperedges of I(B,F) of size 2.

Note that if B is finite, then even if F is infinite, I(B,F) has finitely many hyperedges.
In particular, a hyperedge H can correspond to multiple members of F .

We also define the following subgraph of the Delaunay-graph:

I Definition 4. The restricted Delaunay-graph of B wrt. F is the subgraph of the
Delaunay-graph containing only those (hyper)edges HF = {vB1 , vB2} for which the corres-
ponding F ∈ F intersects B1 and B2 in disjoint regions, that is, F ∩ B1 6= ∅, F ∩ B2 6= ∅,
F ∩B1 ∩B2 = ∅ and F ∩B = ∅ for every B ∈ B \ {B1, B2}.

I Observation 5 ([25]). If B and F are families for which every hyperedge of I(B,F)
contains a hyperedge of size 2, then a proper coloring of the Delaunay-graph is also a proper
coloring of I(B,F).

In the literature hypergraphs that have the property assumed in Observation 5 are
sometimes called rank two hypergraphs (e.g., in [25]).

I Definition 6. We say that B can be properly/conflict-free/etc. colored wrt. F with f(n)
colors if for any B′ subfamily of B of size n, the hypergraph I(B′,F) can be properly/conflict-
free/etc. colored with f(n) colors.

We note that one could further generalize this notion such that instead of intersection
we regard inclusion/reverse-inclusion as the relation that defines the hyperedges, as it is
done, e.g., in [16] for hypergraphs defined by intervals. As we do not consider problems in
this paper for which this generalization is necessary, for simplicity we do not complicate our
notation to contain these cases. For related problems see Section 4.
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In the majority of earlier results, coloring points wrt. a family of regions or coloring a
family of regions wrt. points were regarded. While they were not defined as intersection
hypergraphs, they do fit into our general definition of intersection hypergraphs, choosing
either B or F to be the family of points of the plane. Notice that whenever every point is
or can be added as a member of the family F , e.g., for disks, for homothets of a convex
region and for pseudo-disks1, coloring intersection hypergraphs of F wrt. to F is a common
generalization both of coloring points wrt. F and coloring F wrt. points.

There are a few earlier results regarding this general setting. In [16] intersection (and also
inclusion and reverse-inclusion) hypergraphs of intervals of the line were considered. In [11]
and [8] they considered intersection hypergraphs (and graphs) of (unit) disks, pseudo-disks,
squares and axis-parallel rectangles.

1.1 Results related to pseudo-disks
It is well known that the Delaunay-graph of points wrt. disks is planar and thus proper 4-
colorable, and Observation 5 implies that the respective hypergraph is also proper 4-colorable.

In [25] Smorodinsky developed a general framework (based on the framework presented
in [7]): using proper colorings of the subhypergraphs of the hypergraph with constantly
many colors it can build a conflict-free coloring with O(log n) colors (where n is the number
of vertices of the hypergraph). The results mentioned from now on use this framework to
get a conflict-free coloring once there is a proper coloring. First, using the precursor of this
framework, it was proved by Even et al. [7] that points wrt. disks admit a conflict-free
coloring with O(log n) colors:

I Theorem 7 ([7]). Let D be the family of disks in the plane and S a finite set of points,
I(S,D) admits a conflict-free coloring with O(log n) colors, where n = |S|.

I Definition 8. A Jordan region is a (simply connected) closed bounded region whose
boundary is a closed simple Jordan curve.

A family of Jordan regions is called a family of pseudo-disks if the boundaries of every
pair of the regions intersect in at most two points.

Although we could not find it in the literature, it is well known that for pseudo-disks
the bound of Theorem 7 holds as well, the reason is that the Delaunay-graph of points with
respect to pseudo-disks is also a planar graph (implied by, e.g., Lemma 29, see later) and thus
proper 4-colorable and then we can apply Observation 5 (we can assume that the hypergraph
is rank two by, e.g., Corollary 26) and the same general framework to conclude the O(log n)
upper bound for a conflict-free coloring.

The dual of Theorem 7 was also proved by Even et al. and was generalized to pseudo-disks
by Smorodinsky:

I Theorem 9 ([7]). Let P be the set of all points of the plane and B a finite family of disks,
I(B, P ) admits a proper coloring with 4 colors and a conflict-free coloring with O(log n)
colors, where n = |B|.

I Theorem 10 ([25]). Let P be the set of all points of the plane and B be a finite family
of pseudo-disks, I(B, P ) admits a proper coloring with a constant number of colors and a
conflict-free coloring with O(log n) colors, where n = |B|.

1 See Corollary 26 for a precise formulation of this property for pseudo-disks.
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While for coloring pseudo-disks wrt. points there was no explicit upper bound, for the
special case of homothets of a convex region2, the constant was shown by Cardinal and
Korman to be 4, just like for disks:

I Theorem 11 ([4]). Let P be the set of all points of the plane and B be a finite family of
homothets of a given convex region, I(B, P ) admits a proper coloring with 4 colors.

Recently it was proved by Keller and Smorodinsky that disks w.r.t. disks can be also
colored in such a way, a common generalization of Theorems 7 and 9:

I Theorem 12 ([11]). Let D be the family of all disks in the plane and B a finite family of
disks, I(B,D) admits a proper coloring with 6 colors and a conflict-free coloring with O(log n)
colors, where n = |B|.

While they did not prove the same for pseudo-disks, they solved two special cases (they
stated these only as part of the proof of their main result):

I Claim 13 ([11]). Given a finite family F of pseudo-disks and a subfamily B of F , If
either B or F \ B contains only pairwise disjoint pseudo-disks, then I(B,F) admits a proper
coloring with a constant number of colors and a conflict-free coloring with O(log n) colors,
where n = |B|.

In this paper we generalize Theorem 12 to the case of coloring a pseudo-disk family
wrt. another pseudo-disk family, which is a common generalization of all the above results
(Theorems 7,9,10,11,12 and Claim 13). Moreover we prove the optimal upper bound of 4
colors, which improves the bound of Theorem 10 for coloring pseudo-disks wrt. disks from
some constant number of colors to 4 colors and improves the bound of Theorem 12 for
coloring disks wrt. disks from 6 colors to 4 colors. Furthermore, it provides an alternative
proof for Theorems 9 and 11 (both of these were originally proved using dualization and
solving equivalent problems about coloring points in the 3 dimensional space):

I Theorem 14. Given a family F of pseudo-disks and a finite family B of pseudo-disks,
I(B,F) admits a proper coloring with 4 colors.

Along the way we prove that the respective Delaunay-graph is planar:

I Theorem 15. Given a family F of pseudo-disks and a finite family B of pseudo-disks, the
Delaunay-graph of B wrt. F is a planar graph.

This was not known even for the Delaunay-graph of pseudo-disks wrt. points. With
standard methods (present also in the proof of Theorem 22) this already implies Theorem 14
with 6 colors instead of 4. To achieve the optimal bound we will need some additional ideas.

We mention that if B and F are both families of pairwise disjoint simply connected
regions, then I(B,F) is a planar hypergraph3 and all planar hypergraphs can be generated
this way. From this perspective Theorem 14 says that even with a much more relaxed
definition of planarity of a hypergraph it remains 4-colorable.

Using the usual framework it easily follows from Theorem 14 that:

I Corollary 16. Given a family F of pseudo-disks and a finite family B of pseudo-disks,
I(B,F) admits a conflict-free coloring with O(log n) colors, where n = |B|.

2 For further results about homothets of a convex region see Section 4.
3 The most common definition of a planar hypergraph is that its bipartite incidence graph is planar.
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We note that Claim 13 implies in a straightforward way the main result of [11] about
conflict-free coloring the (open/closed) neighborhood hypergraphs of intersection graphs of
pseudo-disks (for definitions and details see [11]). Thus, Theorem 14 also implies their main
result.

Note that in Theorem 14 B and F are not related in any way, thus among others,
even though two convex regions can intersect infinitely many times, it implies somewhat
surprisingly the following:

I Corollary 17. We can proper color with 4 colors the family of homothets of a convex region
A wrt. the family of homothets of another convex region B.

1.2 Results related to families of linear union complexity
In [25] Theorem 10 was shown by proving a more general statement about coloring a family
of regions that has linear union complexity wrt. points.

I Definition 18. Let B be a family of finitely many Jordan regions in the plane. The
vertices of the arrangement of B are the intersection points of the boundaries of regions
in B, the edges are the maximal connected parts of the boundaries of regions in B that do
not contain a vertex and the faces are the maximal connected parts of the plane which are
disjoint from the edges and the vertices of the arrangement.

I Definition 19. The union complexity U(B) of a family of Jordan regions B is the number
of edges of the arrangement B that lie on the boundary of ∪B∈BB.

We say that a family of regions B has (c)-linear union complexity if there exists a
constant c such that for any subfamily B′ of B the union complexity of B′ is at most c|B′|.4

I Theorem 20 ([10]). Any finite family of pseudo-disks in the plane has a linear union
complexity.

Theorem 20 shows that the following result of Smorodinsky is indeed more general than
Theorem 10.

I Theorem 21 ([25]). Let P be the set of all points of the plane and B be a finite family of
Jordan regions with linear union complexity. Then I(B, P ) admits a proper coloring with a
constant number of colors and a conflict-free coloring with O(log n) colors, where n = |B|.5

We generalize this in the following way:

I Theorem 22. Given a family F of pseudo-disks and a finite family B of Jordan regions
with linear union complexity, I(B,F) admits a proper coloring with constant number of
colors.

Note that using Theorem 20 we get that Theorem 22 implies Theorem 14 with a (non-
explicit and worse) upper bound.

4 Sometimes in the literature, in the definition of union complexity they count vertices rather than edges,
yet it is easy to see that this does not affect the property of having linear union complexity. Also note
that linear union complexity is not always defined hereditarily, we defined it this way in order to simplify
our statements.

5 When a statement is about a family with (c-)linear union complexity, by a constant we mean a constant
that depends on c and the O notation similarly hides a dependence on c.

SoCG 2018
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I Corollary 23. Given a family F of pseudo-disks and a finite family B of Jordan regions
with linear union complexity, I(B,F) admits a conflict-free coloring with O(log n) colors,
where n = |B|.

The rest of the paper is structured as follows. In Section 2 we prove Theorem 15. In
Section 3 we prove Theorem 14. Implications about conflict-free colorings and the results
about regions of linear union complexity can be found in the full version of this paper. We
also give an example that shows that we cannot always color properly points wrt. a family
of linear union complexity with constantly many colors. This shows that Theorem 22 is
strongest possible in the sense that we cannot change F from pseudo-disks to a family with
linear union complexity, even if B would be only a finite family of points in the plane. Finally,
in Section 4 we discuss some related (open) problems.

2 The Delaunay-graph of pseudo-disks wrt. pseudo-disks

In this section we prove Theorem 15. First we list some tools we need from the papers of
Pinchasi and Buzaglo et al. about pseudo-disks:

I Lemma 24 ([23]). Let F be a family of pseudo-disks. Let D ∈ F and let x ∈ D be any
point. Then D can continuously be shrunk to the point x so that at each moment F is a
family of pseudo-disks.

Note that when shrinking this way, we can keep all shrunk copies of D in the family, it
remains a pseudo-disk family as their boundaries are pairwise disjoint.

I Definition 25. We say that a pseudo-disk family F is saturated (for some family of
regions B) if we cannot add pseudo-disks to F in a way that strictly increases the number of
hyperedges in I(B,F).

We can enlarge F greedily until it becomes saturated (we need to add at most 2|B|
pseudo-disks).

I Corollary 26. Given a family F of pseudo-disks and a finite family B of regions, there
exists a saturated (for B) family of pseudo-disks F ′ with F ′ ⊇ F and consequently with
I(B,F ′) ⊇ I(B,F). In particular, for every point p, Hp = {vB : p ∈ B ∈ B} is a hyperedge
of I(B,F ′) (which we call the hyperedge that corresponds to p) if it is of size at least two.

The second part of Corollary 26 holds as for a point p not contained in any member of F
we can add to F a small disk centered at p while for a point p contained in some F ∈ F we
can apply Lemma 24.

When proving our results, it will be enough to consider the case when F is saturated as
adding hyperedges to a hypergraph cannot remove edges from its Delaunay-graph and cannot
decrease the number of colors needed for a proper (or conflict-free) coloring. The following
corollary of Lemma 24 will be useful when we deal with a saturated pseudo-disk family:

I Corollary 27 ([23]). Let B be a family of pairwise disjoint regions in the plane and let F
be a family of pseudo-disks. Let D be a member of F and suppose that D intersects exactly
k members of B one of which is the set B ∈ B. Then for every 2 ≤ l ≤ k there exists a set
D′ ⊂ D such that D′ intersects B and exactly l − 1 other regions from B, and F ∪ {D′} is
again a family of pseudo-disks.
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Figure 1 The edges ef and ef ′ intersect an even number of times.

I Lemma 28 ([3]). Let D1 and D2 be two pseudo-disks in the plane. Let x and y be two
points in D1 \D2. Let a and b be two points in D2 \D1. Let e be any Jordan arc connecting
x and y that is fully contained in D1. Let f be any Jordan arc connecting a and b that is
fully contained in D2. Then e and f cross an even number of times.

I Lemma 29 ([23]). Given a family F of pseudo-disks and a finite family B of pairwise
disjoint connected sets in the plane, the Delaunay-graph of B wrt. F is a planar graph.

Note that for a family B of pairwise disjoint connected sets, the Delaunay-graph and
the restricted Delaunay-graph are the same. Assuming also that B is a family of Jordan
regions, Lemma 29 becomes a special case of Theorem 15. Before proving Theorem 15 we
prove another special case which for Jordan regions strengthens Lemma 29, while its proof
remains relatively simple:

I Lemma 30. Given a family F of pseudo-disks and a finite family B of pseudo-disks such
that each member B ∈ B contains a point which is in no other C ∈ B, the Delaunay-graph
of B wrt. F is a planar graph.

Proof. We will draw G in the plane in such a way that every pair of edges in G that do not
share a common vertex cross an even number of times. The Hanani-Tutte Theorem [6, 29]
then implies the planarity of G. In our case the edges may have self-crossings too but the
Hanani-Tutte theorem holds in this case as well as we can easily redraw the edges to avoid
self-crossings (for further details see, e.g., [24]).

For every vB , B ∈ B choose a point pB ∈ B which is in no other C ∈ B. For an illustration
of the rest of the proof see Figure 1.

If vB and vC are connected by an edge f in G, then ef , the drawing of the edge f ,
connecting pB and pC , is as follows. Let F ∈ F be a pseudo-disk corresponding to f . Draw
an arc aB inside B from pB to a point pBF ∈ B ∩ F (pBF ∈ C is allowed, also pBF may
coincide with pB). Similarly draw an arc aC inside C from pC to a point pCF ∈ C ∩ F

(pCF ∈ B is allowed and pCF may coincide with pC). Finally, draw an arc aBC inside F

from pBF to pCF (pBF and pCF may also coincide in which case aBC is of length zero). The
concatenation of these three arcs is the drawing ef of the edge f between the points pB and
pC . Note that ef may have self-crossings.

We are left to prove that in this drawing of G every pair of edges that do not share a
vertex cross an even number of times.

SoCG 2018
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Let B, C, B′, C ′ ∈ B with edges f defined by F between vB and vC and f ′ defined by
F ′ between vB′ and vC′ Suppose ef = aB ∪ aBC ∪ aC and ef ′ = aB′ ∪ aB′C′ ∪ aC′ are the
drawings of the two edges. Notice that the two endpoints of aB are in B \B′ and the two
endpoints of aB′ are in B′ \B. Thus using Lemma 28 we get that aB with aB′ intersects an
even number of times. The same way we get that aB with aC′ , aC with aB′ and aC with
aC′ intersect an even number of times. As aBC (resp. aB′C′) is disjoint from B′ and C ′

(resp. B and C), there is no intersection between aBC and aB′ , aC′ nor between aB′C′ and
aB , aC . Finally, the two endpoints of aBC are in F \ F ′ and the two endpoints of aB′C′ are
in F ′ \ F thus again using Lemma 28 we get that aBC and aB′C′ intersect an even number
of times. These together imply that indeed ef and ef ′ intersect an even number of times, as
required. J

Pach and Sharir [21] proved that (among others) pseudo-disks have linear union complexity
using a similar approach as the proof of Lemma 30, connecting own-points of intersecting
regions along their boundaries. More recently, Aronov et al. [2] proved (independently) the
case of Lemma 30 when B = F (with an almost identical proof) and showed that this implies
that for a pseudo-disk family F and a finite subfamily B of F , the intersection hypergraph
I(B,F) has VC-dimension at most 4. In fact, Lemma 30 implies the same way also that
I(B,F) has VC-dimension at most 4 when B is any finite pseudo-disk family, not necessarily
a subfamily of F , for details see the full version of this paper.

I Corollary 31. Given a family Fof pseudo-disks and a finite family B of pseudo-disks, the
restricted Delaunay-graph of B wrt. F is a planar graph.

The proof of Corollary 31 can be found in the full version of this paper.

I Observation 32. If F is saturated (for B), then for every F ∈ F the corresponding
hyperedge H = {vB : B ∩ F 6= ∅} of I(B,F) either contains an edge of the restricted
Delaunay-graph or F contains a point contained in at least 2 members of B.

Corollary 31 shows that Lemma 30 takes care of the planarity of the restricted Delaunay-
graph. From Observation 32 we may think that we are left to take care of hyperedges that
contain a point that is contained in at least 2 members of B. This intuition turns out to be
good, in all of our main results Lemma 30 will essentially reduce the problem to regarding
the intersection hypergraph of B wrt. points (instead of B wrt. F).

Before starting the proof of Theorem 15 we make some more preparations:

I Definition 33. Given a family of regions B, a point is k-deep if it is contained in exactly
k members of B. We denote by ∂B the boundary of some region B of B. We call a point
which is in B but no other C ∈ B, an own-point of B.

I Definition 34. A hypergraph H′ supports another hypergraph H if they are on the same
vertex set and for every hyperedge H ∈ H there exists a hyperedge H ′ ∈ H′ such that
H ′ ⊆ H.

I Observation 35. If H′′ supports H′ and H′ supports H, then H′′ supports H.

I Observation 36. If a hypergraph H′ supports another hypergraph H, then the Delaunay-
graph of H is a subgraph of the Delaunay-graph of H′.

Our last tool is the following theorem of Snoeyink and Hershberger (we write here a
special case of what they called as the Sweeping theorem):
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I Theorem 37 ([27]). Let Γ be a finite set of bi-infinite curves in the plane such that any
pair of them intersects at most twice. Let d be a closed curve which intersects at most twice
every curve in Γ. We can sweep d such that every member of the sweeping of d intersects at
most twice every other curve of Γ.

A sweeping of d in Theorem 37 is defined as a family d(t), t ∈ (−1, 1], of pairwise disjoint
curves such that d(0) = d and their union contains all points of the plane (d(−1) is a
degenerate curve consisting of a singular point).

Proof of Theorem 15. Using Corollary 26 we can assume that F is saturated (for B) and
in particular, for every point p, Hp = {vB : p ∈ B ∈ B} is a hyperedge of I(B,F) if it is of
size at least two.

We can keep deleting members of B from B which correspond to a vertex with degree 0
or 1 in the Delaunay-graph, during this process the Delaunay-graph of the new family keeps
containing the graph induced by the original Delaunay-graph on the new (reduced) vertex
set. If we can prove that the new Delaunay-graph is planar, then adding back the degree 0
and 1 vertices in reverse order we see that the original Delaunay-graph is also planar. Thus
we can assume that every vertex of the Delaunay-graph has degree at least two. In this case
for every B ∈ B we have a point in B which is in at most one other C ∈ B (as there are no
degree-0 vertices) and there are no two regions B, C ∈ B such that B ⊂ C (as there are no
degree-0 or degree-1 vertices).

Given B and F we will modify B such that for the new family B̂ of pseudo-disks every
B ∈ B̂ contains an own-point and furthermore we do this in a way that I(B̂,F) supports
I(B,F). Using Lemma 30 we get that the Delaunay-graph of B̂ wrt. F is planar and then
by Observation 36 we get that the Delaunay graph of B wrt. F is also planar.

We do this modification by repeating the below defined operation finitely many times, at
each time decreasing by at least one the number of members of B without an own-point. We
now define the three steps of this operation.

Step 1 - Preparation.
Take an arbitrary B ∈ B that does not contain an own-point. We take a C ∈ B for which
vB is connected to vC in the Delaunay-graph. Thus, there is a point p which is in B ∩ C

but no other member of B. We morph the plane such that B ∩ C becomes a square R

such that the two intersection points of the boundary of B and C are on the horizontal
halving line of the square (the upper part of ∂R belongs to ∂B and the lower part of ∂R

belongs to ∂C) and no member of B (and F) intersects the vertical sides of the square.
This morphing is easily doable and it leaves intact the intersection structure of B and F .
Denote by pl and pr the intersection points of ∂B and ∂C, that is, the midpoints of the
left and right side of R. This finishes the Preparation Step of our operation. See the left
side of Figure 2a for what we get after this step.
Step 2 - Pulling apart B ∩ C.
Now we define the Pulling apart B ∩C Step of the operation which keeps the intersection
structure of B and F outside B ∩ C intact. First we morph the plane such that the
square’s height is doubled to get the rectangle R′ while its horizontal halving line does not
change (the part of ∂R′ above the halving line is part of ∂B and the part below is part of
∂C) and the drawing inside R remains untouched. We do this such that the intersections
of members of B (and of F) with the horizontal sides of the square are stretched to
become vertical lines in R′ \ R. Next, for every D ∈ B \ {B} which intersects exactly
one (horizontal) side of R′, we redraw the part of ∂D inside B to be a half-circle inside
B that has the same endpoints. See the right side of Figure 2a, where these redrawn
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Figure 2 Major steps of the operation used in the proof of Theorem 15.

boundary parts are drawn with thin red strokes. We get a modified family B′, while the
topology of F is unmodifed.
It is easy to see that we modified B in a way that B′ remains a pseudo-disk family. Next
we show that I(B′,F) supports I(B,F), that is for every H ∈ I(B,F) there exists a
H ′ ∈ I(B′,F) such that H ′ ⊆ H. If F ∈ F contains only depth-1 points, then it is
disjoint from B∩C and so the hyperedge HF remains in the intersection hypergraph after
pulling apart B ∩ C. Otherwise, F contains a depth-2 point q and then HF contains the
hyperedge Hq. So it is enough to prove that for every Hq there is a hyperedge H ′ (also
corresponding to some point) in I(B′,F) such that H ′ ⊆ Hq. For q /∈ B∩C, Hq remains in
the intersection hypergraph after pulling apart B∩C. Finally, for q ∈ B∩C the hyperedge
Hq contains the hyperedge {vB , vC} which is exactly the hyperedge corresponding to p

in B′ (recall that this is the point that was only in B and C and no other member of B,
and this property remains true for B′ after the operation).
Step 3 - Shrinking of C.
Now we do the final step, the Shrinking of C Step of the operation. Let arc aB (resp.
aC) be the part of ∂R′ above (resp. below) the halving line, which arc is also part of ∂B

(resp. ∂C) after the first two steps of the operation. Let arc a∗ (resp. arc a∗) be the part
of ∂R which is above (resp. below) the halving line. We perturb the vertical parts of a∗

and a∗ slightly so that they do not overlap (nor intersect) with aB and aC . See right side
of Figure 2a for an illustration.
If either a∗ or a∗ contains a point p which is 2-deep (thus contained by B and C and no
other member of B′), then we redraw ∂C such that we change aC to a∗ or a∗ (whichever
contains the 2-deep point p) and then what we get remains a pseudo-disk family. This
way the hyperedge {vB , vC} is still in I(B′′,F) as it is corresponding to a point close to
p. Thus I(B′′,F) supports I(B′,F), and so I(B,F) as well. Furthermore, in B′′ there is
a point close to p which is an own-point of B.
Unfortunately it can happen that none of a∗ and a∗ contains a 2-deep point and so they
are not suitable for redrawing aC . Nevertheless, we assumed that there exists a 2-deep
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point p in B before the operation, which remains 2-deep after the first two steps of the
operation. In the following we find an arc ap connecting pl and pr that goes inside R,
goes through p and intersects exactly once every maximal part inside R of the boundary
of a member of B′, see Figure 2b. Assuming we have this arc ap we can redraw ∂C such
that we change aC to ap and what we get remains a pseudo-disk family. Also, the same
way as in the previous case, we have that I(B′′,F) supports I(B,F) and in B′′ there is a
point close to p which is an own-point of B.
Step 3b - Drawing ap.
While the existence of such an ap is intuitively not surprising, proving its existence is
a somewhat technical application of Theorem 37. The proof can be found in the full
version of this paper.

Thus, with the above 3-step operation we changed B such that one more member, B,
contains an own-point. Also it is easy to see that no other member could have lost its
own-point, as we have redrawn members of B only inside B ∩C, where there were no 1-deep
points. So after finitely many times repeating this operation we get a family B̂ in which
every member has an own-point and whose intersection hypergraph I(B̂,F) supports the
intersection hypergraph I(B,F) we started with, concluding the proof. J

3 Coloring pseudo-disks wrt. pseudo-disks

Note that Observation 5 can be rephrased equivalently such that if the Delaunay-graph of H
supports H, then a proper coloring of the Delaunay-graph is a proper coloring of H. More
generally, it is true that:

I Observation 38. If a hypergraph H′ supports another hypergraph H, then a proper coloring
of H′ is a proper coloring of H.

Proof of Theorem 14. Given the pseudo-disk family F and the finite pseudo-disk family B,
we want to color the vertices of I(B,F) corresponding to the members of B such that for
every F ∈ F the hyperedge HF in B containing exactly those vB for which B ∩ F 6= ∅ is not
monochromatic (assuming that |HF | ≥ 2). Using Corollary 26 and Observation 38 we can
assume that F is saturated (for B).

We prove the existence of a 4-coloring by induction first on the size of B, second on
the size of the largest containment-minimal hyperedges and third on the number of largest
containment-minimal hyperedges. We say that a hypergraph H′ is better than a hypergraph
H (on the same vertex set) if either the size of the largest containment-minimal hyperedges
is smaller in H′ than in H or they are of the same size but there are more of them in H.
Notice that if H′ supports H, then H′ is not worse than H.

If B contains two pseudo-disks B, C such that B ⊂ C, then we can proper color I(B \
{B},F) by induction and then color vB with a color different from the color of vC to get a
proper coloring of I(B,F) as every hyperedge which contains vB must contain vC as well.
Thus, we can assume that no two pseudo-disks in B contain one another.

We can assume that F is saturated (for B) as adding hyperedges to the intersection
hypergraph cannot make it worse. In particular, we can assume that I(B,F) contains a
hyperedge Hp = {vB : p ∈ B ∈ B} (if it is of size at least two) for every point p in the plane.

Take one of the largest containment-minimal hyperedges, H ∈ I(B,F).
If H is of size 2 that means that the Delaunay-graph supports I(B,F) and then by

Theorem 15 we can color it with 4 colors, which by Observation 38 is a proper coloring of
I(B,F), as required. This starts the induction.
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Otherwise, H has l ≥ 3 vertices. Assume by induction that every intersection hypergraph
of pseudo-disks wrt. pseudo-disks better than I(B,F) admits a proper 4-coloring.

If H corresponds to some F that contains only 1-deep points, then using Corollary 27
and that F is saturated we get that H is not containment-minimal, a contradiction. Thus,
H contains a point which is at least 2-deep and then using that H is containment-minimal
and F is saturated there must be a point p (any point inside a pseudo-disk corresponding to
H is such) for which actually H = Hp. Take two members B, C ∈ B for which vB , vC ∈ Hp.
On B ∩C we do the first two steps of the operation used in the proof of Theorem 15 to get a
new pseudo-disk family B′. As we have seen, the intersection hypergraph I(B′,F) supports
I(B,F) and thus I(B′,F) is not worse than I(B,F). If B ∩C in B′ contains a 2-deep point,
then {vB , vC} is a hyperedge of I(B′,F) and the number of size-l hyperedges did actually
decrease (as H is not containment minimal anymore) and so I(B′,F) is better than I(B,F).
Then by induction I(B′,F) can be colored with 4 colors, which by Observation 38 is a proper
coloring of I(B,F) as well.

The only case left is when B ∩ C still does not contain a 2-deep point. In this case
similarly to Step 3 of the operation in the proof of Theorem 15, we redraw ∂C such that we
change aC to a∗ (see again the right side of Figure 2a). In the new family B′′ every point
in R is still covered at least twice, and nothing changed outside R, thus I(B′′,F) supports
I(B′, F ) (and then in turn it suppors I(B,F)). Moreover, the hyperedge corresponding to p

is a subset of Hp but it does not contain vC anymore, so it is a proper subset of H and is of
size at least 2. This implies that the number of size-l hyperedges did decrease. Then again
I(B′′,F) is better than I(B,F) and then by induction can be colored with 4 colors, which
by Observation 38 is a proper coloring of I(B,F) as well. J

Observe that already for coloring points wrt. disks we may need 4 colors (as there are points
whose intersection hypergraph wrt. disks is a complete graph on four vertices), so 4 is also a
lower bound for coloring pseudo-disks wrt. pseudo-disks.

Without going into details, we note that from the proofs we can create (low-degree)
polynomial time coloring algorithms, supposing that initially we are given reasonable amount
of information (e.g., the whole structure of the arrangement (all the vertices, edges and
faces) of the pseudo-disks of B and also for every hyperedge H in I(B,F) we are given an F

corresponding to H).

4 Discussion

As mentioned, the primary motivation behind considering such problems lies in applications
to conflict-free colorings and to cover-decomposability problems.

When the main interest is in conflict-free colorings, the log n factor makes it less interesting
to optimize the bound on the proper coloring result. However, when considering the relation
to cover-decomposability problems, finding the exact value is of great interest. This makes it
important that in Theorem 14 we could prove an exact upper bound for such a wide class of
intersection hypergraphs. On the other hand, in Theorem 22 we aimed for keeping the proof
as simple as possible, and so we did not optimize the number of colors.

In cover-decomposability problems the typical question asks if for some m we can properly
2-color Im(B,F), the subhypergraph of I(B,F) containing only hyperedges of size at least
m. If we properly color Im(B,F), then we say that we color B wrt. F for m.

Usually either B or F is the family of points of the plane. Originally researchers
concentrated on the problem when the other family, F or B, is the family of translates of a
convex region (see, e.g., [20] for a history of this research direction).
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In the past years researchers started to concentrate more on problems where B or F is
the family of homothets of a convex region. One of the the most intriguing open problems is
whether we can 2-color points wrt. homothets of a given convex polygon for some constant
m. The existence of a 2-coloring for some m was proved for triangles [14] and the square [1]
and recently for convex polygons the existence of a 3-coloring for some m was proved [17].
On the other hand, for coloring points wrt. disks 2 colors are not enough (for any m) [22].
As we have seen already in the introduction, a 4-coloring of points wrt. disks always exists
(for m = 2), however the existence of a 3-coloring (for some m) is an open problem (see also
the remark after Problem 39).

For the dual problem, about coloring the homothets of a convex polygon wrt. points, while
proper 2-coloring exists for the homothets of triangles [14] for some m, for the homothets of
other convex polygons there is not always a 2-coloring [18] (for any m). Also, for coloring
disks wrt. points 2 colors are not enough (for any m) [19].

In [17] it was conjectured that points wrt. pseudo-disks and pseudo-disks wrt. points
can be proper 3-colored (for some m). Encouraged by Theorem 14 we pose the common
generalization of these conjectures:

I Problem 39. Does there exist a constant m such that given a family F of pseudo-disks and
a finite family B of pseudo-disks, Im(B,F) always admits a proper coloring with 3 colors?

We note that Tóth [28] showed an example that choosing m = 3 is not enough already
when B is a set of points and F is a family of pseudo-disks.

The case when B is a family of points and F is the family of disks was asked by the
author of this paper 10 years ago [12, 13] and is still open (in this special case even m = 3
might be true).

As we mentioned in the introduction, one can easily change in the definition of the incidence
hypergraph the incidence relation to the containment or reverse-containment relation. Thus
we can define the following hypergraphs: H⊂(B,F) contains a hyperedge H = {vB : B ⊂ F}
for every F ∈ F ; similarly, H⊃(B,F) contains a hyperedge H = {vB : B ⊃ F} for every
F ∈ F (if these sets are of size at least two).

Thus we can ask if the respective variants of Theorem 14 and Problem 39 hold for these
hypergraphs:

I Problem 40. Given a family F of pseudo-disks and a finite family B of pseudo-disks, does
H⊂m(B,F) (resp. H⊃m(B,F)) always admit a proper coloring with 4 colors?

Does there exist a constant m such that H⊂m(B,F) (resp. H⊃m(B,F)) always admits a
proper coloring with 3 colors?

The variant of this problem where F and B are families of intervals on the line was
regarded in [16] where among others it was shown that for intervals these two classes (the
class of containment and reverse-containment hypergraphs of intervals) are the same.

Finally we mention that similarly to pseudo-disks, pseudo-halfplanes are natural gen-
eralizations of halfplanes. For pseudo-halfplanes it was also possible to reprove the same
coloring results that are known for halfplanes [15]. Also, due to the lack of direct relation
to pseudo-disks, we did not mention axis-parallel rectangles, whose intersection hypergraph
coloring problems are some of the most interesting open problems of the area.
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