2,907 research outputs found

    Weak Completeness Theorem for Propositional Linear Time Temporal Logic

    Get PDF
    The author is the winner of the Mizar Prize for Young Researchers in 2012 for this article.I would like to thank Prof. Dr. Stephan Merz for valuable hints which helped me to prove the theorem. I would particularly like to thank Dr. Artur Korniłowicz who patiently answered a lot of my questions regarding writing this article. I would like to thank Dr. Josef Urban for discussions and encouragement to write the article. I would like to thank Prof. Andrzej Trybulec, Dr. Adam Naumowicz, Dr. Grzegorz Bancerek and Karol Pak for their help in preparation of the article.We prove weak (finite set of premises) completeness theorem for extended propositional linear time temporal logic with irreflexive version of until-operator. We base it on the proof of completeness for basic propositional linear time temporal logic given in [20] which roughly follows the idea of the Henkin-Hasenjaeger method for classical logic. We show that a temporal model exists for every formula which negation is not derivable (Satisfiability Theorem). The contrapositive of that theorem leads to derivability of every valid formula. We build a tree of consistent and complete PNPs which is used to construct the model.This work has been supported by the Polish Ministry of Science and Higher Education project “Managing a Large Repository of Computer-verified Mathematical Knowledge” (N N519 385136).Department of Logic, Informatics and Philosophy of Science, University of Białystok, Plac Uniwersytecki 1, 15-420 Białystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. Introduction to trees. Formalized Mathematics, 1(2):421-427, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek. König’s lemma. Formalized Mathematics, 2(3):397-402, 1991.Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Czesław Bylinski. Binary operations. Formalized Mathematics, 1(1):175-180, 1990.Czesław Bylinski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.Czesław Bylinski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.Czesław Bylinski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Czesław Bylinski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Czesław Bylinski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Mariusz Giero. The axiomatization of propositional linear time temporal logic. Formalized Mathematics, 19(2):113-119, 2011, doi: 10.2478/v10037-011-0018-1.Mariusz Giero. The derivations of temporal logic formulas. Formalized Mathematics, 20(3):215-219, 2012, doi: 10.2478/v10037-012-0025-x.Mariusz Giero. The properties of sets of temporal logic subformulas. Formalized Mathematics, 20(3):221-226, 2012, doi: 10.2478/v10037-012-0026-9.Adam Grabowski. Hilbert positive propositional calculus. Formalized Mathematics, 8(1):69-72, 1999.Fred Kr¨oger and Stephan Merz. Temporal Logic and State Systems. Springer-Verlag, 2008.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Karol Pak. Continuity of barycentric coordinates in Euclidean topological spaces. Formalized Mathematics, 19(3):139-144, 2011, doi: 10.2478/v10037-011-0022-5.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Andrzej Trybulec. Defining by structural induction in the positive propositional language. Formalized Mathematics, 8(1):133-137, 1999.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Many argument relations. Formalized Mathematics, 1(4):733-737, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    On Sub-Propositional Fragments of Modal Logic

    Get PDF
    In this paper, we consider the well-known modal logics K\mathbf{K}, T\mathbf{T}, K4\mathbf{K4}, and S4\mathbf{S4}, and we study some of their sub-propositional fragments, namely the classical Horn fragment, the Krom fragment, the so-called core fragment, defined as the intersection of the Horn and the Krom fragments, plus their sub-fragments obtained by limiting the use of boxes and diamonds in clauses. We focus, first, on the relative expressive power of such languages: we introduce a suitable measure of expressive power, and we obtain a complex hierarchy that encompasses all fragments of the considered logics. Then, after observing the low expressive power, in particular, of the Horn fragments without diamonds, we study the computational complexity of their satisfiability problem, proving that, in general, it becomes polynomial

    Constraint LTL Satisfiability Checking without Automata

    Get PDF
    This paper introduces a novel technique to decide the satisfiability of formulae written in the language of Linear Temporal Logic with Both future and past operators and atomic formulae belonging to constraint system D (CLTLB(D) for short). The technique is based on the concept of bounded satisfiability, and hinges on an encoding of CLTLB(D) formulae into QF-EUD, the theory of quantifier-free equality and uninterpreted functions combined with D. Similarly to standard LTL, where bounded model-checking and SAT-solvers can be used as an alternative to automata-theoretic approaches to model-checking, our approach allows users to solve the satisfiability problem for CLTLB(D) formulae through SMT-solving techniques, rather than by checking the emptiness of the language of a suitable automaton A_{\phi}. The technique is effective, and it has been implemented in our Zot formal verification tool.Comment: 39 page

    Completeness of a first-order temporal logic with time-gaps

    Get PDF
    The first-order temporal logics with □ and ○ of time structures isomorphic to ω (discrete linear time) and trees of ω-segments (linear time with branching gaps) and some of its fragments are compared: the first is not recursively axiomatizable. For the second, a cut-free complete sequent calculus is given, and from this, a resolution system is derived by the method of Maslov

    A History of Until

    Get PDF
    Until is a notoriously difficult temporal operator as it is both existential and universal at the same time: A until B holds at the current time instant w iff either B holds at w or there exists a time instant w' in the future at which B holds and such that A holds in all the time instants between the current one and w'. This "ambivalent" nature poses a significant challenge when attempting to give deduction rules for until. In this paper, in contrast, we make explicit this duality of until to provide well-behaved natural deduction rules for linear-time logics by introducing a new temporal operator that allows us to formalize the "history" of until, i.e., the "internal" universal quantification over the time instants between the current one and w'. This approach provides the basis for formalizing deduction systems for temporal logics endowed with the until operator. For concreteness, we give here a labeled natural deduction system for a linear-time logic endowed with the new operator and show that, via a proper translation, such a system is also sound and complete with respect to the linear temporal logic LTL with until.Comment: 24 pages, full version of paper at Methods for Modalities 2009 (M4M-6
    corecore