94 research outputs found

    Web-assisted tunneling in the kicked harmonic oscillator

    Full text link
    We show that heating of harmonically trapped ions by periodic delta kicks is dramatically enhanced at isolated values of the Lamb-Dicke parameter. At these values, quasienergy eigenstates localized on island structures undergo avoided crossings with extended web-states.Comment: 4 pages, 4 figures. Accepted for publication in Phys. Rev. Let

    Dynamical Stability and Quantum Chaos of Ions in a Linear Trap

    Full text link
    The realization of a paradigm chaotic system, namely the harmonically driven oscillator, in the quantum domain using cold trapped ions driven by lasers is theoretically investigated. The simplest characteristics of regular and chaotic dynamics are calculated. The possibilities of experimental realization are discussed.Comment: 24 pages, 17 figures, submitted to Phys. Rev

    Fractional Fourier detection of L\'evy Flights: application to Hamiltonian chaotic trajectories

    Full text link
    A signal processing method designed for the detection of linear (coherent) behaviors among random fluctuations is presented. It is dedicated to the study of data recorded from nonlinear physical systems. More precisely the method is suited for signals having chaotic variations and sporadically appearing regular linear patterns, possibly impaired by noise. We use time-frequency techniques and the Fractional Fourier transform in order to make it robust and easily implementable. The method is illustrated with an example of application: the analysis of chaotic trajectories of advected passive particles. The signal has a chaotic behavior and encounter L\'evy flights (straight lines). The method is able to detect and quantify these ballistic transport regions, even in noisy situations

    Global Superdiffusion of Weak Chaos

    Full text link
    A class of kicked rotors is introduced, exhibiting accelerator-mode islands (AIs) and {\em global} superdiffusion for {\em arbitrarily weak} chaos. The corresponding standard maps are shown to be exactly related to generalized web maps taken modulo an ``oblique cylinder''. Then, in a case that the web-map orbit structure is periodic in the phase plane, the AIs are essentially {\em normal} web islands folded back into the cylinder. As a consequence, chaotic orbits sticking around the AI boundary are accelerated {\em only} when they traverse tiny {\em ``acceleration spots''}. This leads to chaotic flights having a quasiregular {\em steplike} structure. The global weak-chaos superdiffusion is thus basically different in nature from the strong-chaos one in the usual standard and web maps.Comment: REVTEX, 4 Figures: fig1.jpg, fig2.ps, fig3.ps, fig4.p

    Edge of chaos of the classical kicked top map: Sensitivity to initial conditions

    Full text link
    We focus on the frontier between the chaotic and regular regions for the classical version of the quantum kicked top. We show that the sensitivity to the initial conditions is numerically well characterised by Ο=eqλqt\xi=e_q^{\lambda_q t}, where eqx≡[1+(1−q)x]11−q(e1x=ex)e_{q}^{x}\equiv [ 1+(1-q) x]^{\frac{1}{1-q}} (e_1^x=e^x), and λq\lambda_q is the qq-generalization of the Lyapunov coefficient, a result that is consistent with nonextensive statistical mechanics, based on the entropy Sq=(1−∑ipiq)/(q−1)(S1=−∑ipiln⁥piS_q=(1- \sum_ip_i^q)/(q-1) (S_1 =-\sum_i p_i \ln p_i). Our analysis shows that qq monotonically increases from zero to unity when the kicked-top perturbation parameter α\alpha increases from zero (unperturbed top) to αc\alpha_c, where αc≃3.2\alpha_c \simeq 3.2. The entropic index qq remains equal to unity for α≄αc\alpha \ge \alpha_c, parameter values for which the phase space is fully chaotic.Comment: To appear in "Complexity, Metastability and Nonextensivity" (World Scientific, Singapore, 2005), Eds. C. Beck, A. Rapisarda and C. Tsalli
    • 

    corecore