24 research outputs found

    The Spectrum of Strong Behavioral Equivalences for Nondeterministic and Probabilistic Processes

    Full text link
    We present a spectrum of trace-based, testing, and bisimulation equivalences for nondeterministic and probabilistic processes whose activities are all observable. For every equivalence under study, we examine the discriminating power of three variants stemming from three approaches that differ for the way probabilities of events are compared when nondeterministic choices are resolved via deterministic schedulers. We show that the first approach - which compares two resolutions relatively to the probability distributions of all considered events - results in a fragment of the spectrum compatible with the spectrum of behavioral equivalences for fully probabilistic processes. In contrast, the second approach - which compares the probabilities of the events of a resolution with the probabilities of the same events in possibly different resolutions - gives rise to another fragment composed of coarser equivalences that exhibits several analogies with the spectrum of behavioral equivalences for fully nondeterministic processes. Finally, the third approach - which only compares the extremal probabilities of each event stemming from the different resolutions - yields even coarser equivalences that, however, give rise to a hierarchy similar to that stemming from the second approach.Comment: In Proceedings QAPL 2013, arXiv:1306.241

    Process Algebraic Modeling and Analysis of Power-Aware Real-Time Systems

    Get PDF
    The paper describes a unified formal framework for designing and reasoning about power-constrained, real-time systems. The framework is based on process algebra, a formalism which has been developed to describe and analyze communicating, concurrent systems. The proposed extension allows the modeling of probabilistic resource failures, priorities of resource usages, and power consumption by resources within the same formalism. Thus, it is possible to evaluate alternative power-consumption behaviors and tradeoffs under different real-time schedulers, resource limitations, resource failure probabilities, etc. This paper describes the modeling and analysis techniques, and illustrates them with examples, including a dynamic voltage-scaling algorithm

    Game Characterization of Probabilistic Bisimilarity, and Applications to Pushdown Automata

    Full text link
    We study the bisimilarity problem for probabilistic pushdown automata (pPDA) and subclasses thereof. Our definition of pPDA allows both probabilistic and non-deterministic branching, generalising the classical notion of pushdown automata (without epsilon-transitions). We first show a general characterization of probabilistic bisimilarity in terms of two-player games, which naturally reduces checking bisimilarity of probabilistic labelled transition systems to checking bisimilarity of standard (non-deterministic) labelled transition systems. This reduction can be easily implemented in the framework of pPDA, allowing to use known results for standard (non-probabilistic) PDA and their subclasses. A direct use of the reduction incurs an exponential increase of complexity, which does not matter in deriving decidability of bisimilarity for pPDA due to the non-elementary complexity of the problem. In the cases of probabilistic one-counter automata (pOCA), of probabilistic visibly pushdown automata (pvPDA), and of probabilistic basic process algebras (i.e., single-state pPDA) we show that an implicit use of the reduction can avoid the complexity increase; we thus get PSPACE, EXPTIME, and 2-EXPTIME upper bounds, respectively, like for the respective non-probabilistic versions. The bisimilarity problems for OCA and vPDA are known to have matching lower bounds (thus being PSPACE-complete and EXPTIME-complete, respectively); we show that these lower bounds also hold for fully probabilistic versions that do not use non-determinism

    Probabilistic Mobility Models for Mobile and Wireless Networks

    Get PDF
    International audienceIn this paper we present a probabilistic broadcast calculus for mobile and wireless networks whose connections are unreliable. In our calculus, broadcasted messages can be lost with a certain probability, and due to mobility the connection probabilities may change. If a network broadcasts a message from a location, it will evolve to a network distribution depending on whether nodes at other locations receive the message or not. Mobility of nodes is not arbitrary but guarded by a probabilistic mobility function (PMF), and we also define the notion of a weak bisimulation given a PMF. It is possible to have weak bisimular networks which have different probabilistic connectivity information. We furthermore examine the relation between our weak bisimulation and a minor variant of PCTL* [1]. Finally, we apply our calculus on a small example called the Zeroconf protocol [2]

    Verification of random behaviours

    Get PDF
    We introduce abstraction in a probabilistic process algebra. The process algebra can be employed for specifying processes that exhibit both probabilistic and non-deterministic choices in their behaviours. Several rules and axioms are identified, allowing us to rewrite processes to less complex processes by removing redundant internal activity. Using these rules, we have successfully conducted a verification of the Concurrent Alternating Bit Protocol. The verification shows that after abstraction of internal activity, the protocol behaves as a buffer

    On the Efficiency of Deciding Probabilistic Automata Weak Bisimulation

    Get PDF
    Weak probabilistic bisimulation on probabilistic automata can be decided by an algorithm that needs to check a polynomial number of linear programming problems encoding weak transitions. It is hence polynomial, but not guaranteed to be strongly polynomial. In this paper we show that for polynomial rational proba- bilistic automata strong polynomial complexity can be ensured. We further discuss complexity bounds for generic probabilistic automata. Then we consider several practical algorithms and LP transformations that enable an efficient solution for the concrete weak transition problem. This sets the ground for effective compositional minimisation approaches for probabilistic automata and Markov decision processes
    corecore