
University of Pennsylvania
ScholarlyCommons

Departmental Papers (CIS) Department of Computer & Information Science

August 2002

Process Algebraic Modeling and Analysis of Power-
Aware Real-Time Systems
Insup Lee
University of Pennsylvania, lee@cis.upenn.edu

Anna Philippou
University of Cyprus

Oleg Sokolsky
University of Pennsylvania, sokolsky@cis.upenn.edu

Follow this and additional works at: http://repository.upenn.edu/cis_papers

This paper is a postprint of a paper submitted to and accepted for publication in Computing and Control Engineering Journal, Volume 13, Issue 4, pages
180-188, and is subject to IEE Copyright. The copy of record is available at IEE Digital Library.

This paper is posted at ScholarlyCommons. http://repository.upenn.edu/cis_papers/162
For more information, please contact libraryrepository@pobox.upenn.edu.

Recommended Citation
Insup Lee, Anna Philippou, and Oleg Sokolsky, "Process Algebraic Modeling and Analysis of Power-Aware Real-Time Systems", .
August 2002.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by ScholarlyCommons@Penn

https://core.ac.uk/display/76382822?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://repository.upenn.edu?utm_source=repository.upenn.edu%2Fcis_papers%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis?utm_source=repository.upenn.edu%2Fcis_papers%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers?utm_source=repository.upenn.edu%2Fcis_papers%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages
http://repository.upenn.edu/cis_papers/162
mailto:libraryrepository@pobox.upenn.edu

Process Algebraic Modeling and Analysis of Power-Aware Real-Time
Systems

Abstract
The paper describes a unified formal framework for designing and reasoning about power-constrained, real-
time systems. The framework is based on process algebra, a formalism which has been developed to describe
and analyze communicating, concurrent systems. The proposed extension allows the modeling of
probabilistic resource failures, priorities of resource usages, and power consumption by resources within the
same formalism. Thus, it is possible to evaluate alternative power-consumption behaviors and tradeoffs under
different real-time schedulers, resource limitations, resource failure probabilities, etc. This paper describes the
modeling and analysis techniques, and illustrates them with examples, including a dynamic voltage-scaling
algorithm.

Keywords
Power-aware systems, resource modeling, process algebra

Comments
This paper is a postprint of a paper submitted to and accepted for publication in Computing and Control
Engineering Journal, Volume 13, Issue 4, pages 180-188, and is subject to IEE Copyright. The copy of record is
available at IEE Digital Library.

This journal article is available at ScholarlyCommons: http://repository.upenn.edu/cis_papers/162

http://repository.upenn.edu/cis_papers/162?utm_source=repository.upenn.edu%2Fcis_papers%2F162&utm_medium=PDF&utm_campaign=PDFCoverPages

Process Algebraic Modeling and Analysis of Power-
Aware Real-Time Systems

Insup Lee, Anna Philippou, and Oleg Sokolsky

Abstract. The paper describes a unified formal framework for designing and reasoning about power-
constrained, real-time systems. The framework is based on process algebra, a formalism which has been
developed to describe and analyze communicating, concurrent systems. The proposed extension allows the
modeling of probabilistic resource failures, priorities of resource usages, and power consumption by
resources within the same formalism. Thus, it is possible to evaluate alternative power-consumption
behaviors and tradeoffs under different real-time schedulers, resource limitations, resource failure
probabilities, etc. This paper describes the modeling and analysis techniques, and illustrates them with
examples, including a dynamic voltage-scaling algorithm.

1. Introduction

In recent years, there have been great technological advances in wireless communication and mobile
computing. These advances have given rise to sophisticated embedded devices (e.g., PDA, cell phones,
and smart sensors) and wireless network infrastructures that are becoming widely available. In addition,
new applications with powerful functionalities are being developed to meet the ever-increasing demand by
the users. A serious limitation of the mobile embedded devices is the battery life available to them.
Although a great deal of power-intensive computation has to be performed to carry out application-specific
functionalities, such as video streaming, this has to be done on a limited amount of power. To cope with
this fact, a number of power-aware algorithms and protocols have been proposed aiming to make energy
savings by dynamically altering the power consumed by a processor while still achieving the required
behavior. However, in time-constrained applications often found in embedded systems, applying power-
saving techniques can lead to serious problems. This is because changing the power available to tasks can
affect their execution time which may lead to violation of their timing constraints and other desirable
properties. A challenge presented by such systems is the development of robust algorithms that incorporate
power-saving techniques and task management without sacrificing timing and performance guarantees. An
example of such a proposal can be found in [1].

This paper describes a unified formal framework for designing and reasoning about power-constrained,
real-time systems. The framework we propose is based on process algebra, a formalism which has been
developed to describe and analyze communicating concurrently-executing systems, and is called P2ACSR
(Power-aware, Probabilistic ACSR). Process algebras are based on the premises that the two most essential
notions in understanding complex dynamic systems are concurrency and communication. The most salient
aspect of process algebras is that they support the modular specification and verification of systems, and
thus, it is possible to analyze a whole system by reasoning about its parts. Process algebras are being used
widely in specifying and verifying concurrent systems and they also have been extended to include the
notions such as time and probability to facilitate the modeling of real-world systems.

The process algebra P2ACSR extends our previous work on formal methods for real-time [2] and
probabilistic systems [3] by incorporating the ability to reason about power consumption. The Algebra of
Communicating Shared Resources (ACSR) [2] is a timed process algebra which represents a real-time
system as a collection of concurrent processes. The computation model of ACSR is based on the view that
a real-time system consists of a set of communicating processes that use shared resources for execution and
synchronize with one another. That is, each process can engage in two kinds of activities: communication
with other processes by instantaneous events and computation by timed actions. Executing a timed action
requires access to a set of resources and takes a non-zero amount of time measured by an implicit global
clock. Resources are serially reusable. The notion of a resource, which is essential in modeling of real-time

systems, additionally provides an important abstraction mechanism for capturing various aspects of systems
behavior. One such aspect is the failure of physical devices: in PACSR [3], the probabilistic extension of
ACSR, resources are extended with failure probabilities. In P2ACSR, the resource model of PACSR is
further extended to capture power consumption. Resources in P2ACSR specifications are accompanied
with information about the amount of power consumed by each resource use. Thus, for each execution step
requiring access to a set of power-consuming resources, it is possible to compute the power consumed by
the step and similarly for a sequence of such steps.

To be able to understand and analyze the timed behaviors and the power-consumption characteristics of
P2ACSR specifications, it is important that P2ACSR has precisely defined semantics. The semantics needs
to capture probabilistic behavior of the model, which is present due to resource failure, as well as
nondeterministic behavior that reflects the possibility for a set of events to be enabled simultaneously from
one or more processes. We have defined the operational semantics of P2ACSR by a set of rules that can be
used to derive all possible behaviors of a P2ACSR process. Behaviors, in turn, are captured as labeled
concurrent Markov chains [4], which are transition systems containing both probabilistic and
nondeterministic execution steps.

Once a specification is written and its behaviors understood, the next step is to analyze whether or not the
specified model satisfies required properties. We describe analysis methods that can be carried out on this
model by extending model-checking techniques to allow reasoning about power consumption properties.
Temporal logics are commonly used to express high-level requirements of systems including probabilistic
criteria that apply to fragments of systems executions. We associate power-consumption constraints with
temporal operators. For example, given a communication protocol in which a sender inquires about the
readiness of a receiver and sends data after obtaining an acknowledgement, a useful property to check
would be that this exchange happens correctly without consuming more than an acceptable level of power
of the sender's processing unit. To further enable power-consumption calculations, we employ a technique
that computes bounds on a system's power consumption. We illustrate the formalism and analysis
techniques using some simple examples, including a dynamic voltage-scaling algorithm for real-time,
power-aware systems [1]. In this example, we use resources to model the power-consuming processing unit
which can be used at different power levels on different occasions. Furthermore, we model uncertainties in
task execution times using the notion of probabilistic behaviors supported by P2ACSR.

The rest of the paper is organized as follows: the next section explains the P2ACSR framework, by
introducing the syntax, providing informal semantics and presenting some examples. Section 3 describes
analysis techniques for P2ACSR processes, and Section 4 presents the case study in which a power-aware
real-time scheduling algorithm is modeled and analyzed. We conclude with some final remarks and
discussion of further work.

2. The Framework

Process algebra theory is now well established as a powerful mathematical model of concurrency, allowing
the representation and analysis of communicating, concurrent systems and algorithms. Its basic entities are
processes and channels, the former being the means for describing parts of a system acting concurrently
and independently of other parts, and the latter being the points of interaction and synchronization amongst
processes. The operators of process algebra, including operators such as sequential and parallel
composition, allow for hierarchical description of systems, an invaluable feature for specification and
compositional reasoning and analysis.

In our framework we extend this view of concurrent systems and include as a basic entity that of a resource.
In particular, we consider a system to contain a finite set of reusable resources. Resources can be used to
model physical entities, such as processor units and communication channels, or to abstract notions such as
semaphores and message arrival. We allow resources to be associated with various attributes to capture
aspects of resource-constrained computation. Such attributes can be associated to a resource itself or
separately to each resource use. Specifically, we employ the following attributes:

• Probability of failure: We assume that resources of a system may fail during computation and
associate to a resource a probability capturing the rate at which the resource may fail. A failure may
correspond to a physical failure of a resource, such as a failure of a communication link, or the
failure of some abstract condition, for example no message arrival when one was expected. Thus
given a resource r we write π(r) for the probability of r being up, consequently, r fails with
probability 1 – π(r). To enable the specification of recovery from failures, we introduce the notion of

a failed resource: for any resourcer we write r for the failed resourcer that can be used whenever
resource r fails. This attribute remains constant throughout a system specification.

• Priority: Our formalism views a real-time system as a set of communicating processes sharing a set
of serially-reusable resources. Since no more than a single system component can use a resource
simultaneously, we choose to arbitrate the contention for the use of resources according to priorities.
Thus, we associate to each resource use the priority level of the resource request.

• Power consumption: In order to reason about power consumption in distributed settings, we assume
that the set of resources is partitioned into a finite set of disjoint classes, each class corresponding to
a distinct power source which can provide a limited amount of power at any given time and for any
period of time. Thus for each resource use we can specify the rate of power consumption required for
that use and reason about the power consumption of a system.

Like its predecessors ACSR and PACSR, processes in P2ACSR can engage in two types of activities,
instantaneous events and timed actions. These may arise as follows:

Instantaneous events. Instantaneous events are the basic communication and synchronization primitives
of the process algebra. They involve the use of a channel at some priority and they are denoted as a pair of
the form (a,p) where a is the label of the event, the channel, and p, a natural number, the priority at which
the channel is used. Labels are drawn from some set L where we assume that for each label a in L its
inverse label a is also in L. The special label τ also assumed to be in L is called the silent event arises
when two events with inverse label are executed concurrently. Events are assumed to take no time. We let a,
b to represent labels.

Timed Actions. The second activity a process can engage in is that of a timed action. This involves the
usage of a set of resources each at a certain priority and power-consumption level. Timed actions are
assumed to consume one unit of time and are denoted by a finite set of triples of the form {(r1, p1, c1),…,
(rn, pn, cn)} representing the intention of using each resourceri at priority level pi and power consumption
level ci. Action ∅ represents idling for one unit of time since no resource is consumed. We let A, B,… to
represent timed actions.

An example of a timed action is given by {(cpu,3,1),(msg,1,0)}. This action takes one unit of time, and uses
resource cpu representing a processor unit, at priority level 3 and power consumption level 1. The
processor can fail with probability π(cpu). This action also assumes that the processor receives a message to
continue its processing, represented by resource msg. The fact that this message may or may not arrive is
modeled as the failure of resource msg. This is not a physical failure, but rather a failed assumption. The
action {(cpu,3,1),(msg,1,0)} takes place assuming that none of the resources cpu and msg fail. On the other

hand, action {(cpu,3,1),(msg ,1,0)} takes place given that resource msg fails and resource cpu does not. So,

for example, assuming that resources cpu and msg have probabilities of failure 0 and 1/3, respectively, that

is, π(cpu)=1 and π(msg) = 2/3, then action {(cpu,3,1),(msg ,1,0)} takes place with probability

π(cpu)⋅π(msg)=1/3 and fails with probability 2/3.

Processes. We let P, Q range over processes and we assume a set of process constants each with an

associated definition of the kind PX
def

= . The following grammar describes the syntax of P2ACSR
processes:

P ::= NIL | (a,p). P | A:P | b→P | P + Q | P || Q | P\F | [P]I | rec X. P | X

Process NIL represents the inactive process. There are two prefix operators, corresponding to the two types
of activities. The first, (a,p).P, executes the instantaneous event (a,p) and proceeds to P. The second, A:P,
executes a resource-consuming action A during the first time unit and proceeds to process P. An action can
take place if none of the resources used by it fails and assuming that it does not violate the system's power
constraints. Otherwise, process A:P cannot execute the action and behaves as NIL. As a shorthand notation,
we will write An:P for a process that performs n consecutive actions A and then behaves as P. The process
P+Q represents a nondeterministic choice between the two summands. The process P||Q describes the
concurrent composition of P and Q: the component processes may proceed independently or interact with
one another while executing events, and they synchronize on timed actions. In P\F, where F is a set of
labels, the scope of labels in F is restricted to process P: components of P may use these labels to interact
with one another but not with P's environment. The construct [P]I, I⊆R, produces a process that reserves
the use of resources in I for itself. Finally, the process rec X. P denotes standard recursion.

We will explain P2ACSR through some simple examples. Consider a simple system C (Figure 2.1.(a)),
consisting of an input channel in and an output channel out, and a resource cpu, such that, every time a
message is received via in the resource cpu is consumed for a single time unit and then a message is sent
via channel out.

 (a)

in outC

∅

C’
)1,(in

)1,(out)}2,1,{(cpu

cpu

(b)

Figure 2.1. (a) Diagrammatic and (b) P2ACSR description of system C.

The P2ACSR description (Figure 2.1.(b)) specifies that, in its initial state, C may receive an input via
channel in and then behave as C’. Alternatively, process C may idle for one time unit. On the other hand,
process C’ employs resource cpu at priority level 1 and power consumption level 2 to produce an output at
channel out, and then returns to the initial state C.

Now consider the possibility that in any time unit, resource cpu may fail with probability 0.01, that is,
π(cpu) = 0.99. If such a failure takes place, action {(cpu,1,2)} cannot take place and process C’, requiring
the use of a failed resource, becomes inactive and deadlocks. Then, we may define a fault-tolerant version

FC of system C as shown in Figure 2.2(a). Here, in case there is a failure of resource cpu , i.e., cpu is up,

only one unit of power is consumed by the cpu and the process returns to the initial state without producing
an output.

C
def

= (in,1). C’ + ∅ : C

C’
def

= {(cpu,1,2)} : (out ,1). C

(a) (b)

Figure 2.2. (a) P2ACSR description of system FC and (b) its transition system.

Semantics. The informal account of behavior given of processes can be made precise via a family of rules
that define the labeled transition relations on processes. The semantics is defined in two steps. First, we
develop the transition system that captures the nondeterministic and probabilistic behavior of processes.
Next, this transition system is refined into the prioritized transition system which implements priority
arbitration between actions. The precise semantics rules are omitted but can be found in [10].

The unprioritized semantics is based on the notion of a world, which keeps information about the state of
the resources of a process. Given a set of resources Z, the set of possible worlds involving Z is the set of all
possible combinations of the resources in Z being up or down. Given a world W of a set of resources Z, we
can calculate the probability of W by multiplying the probabilities of every resource in W.

Behavior of a given process P can be given only with respect to the world P is in. A configuration is a pair
of the form (P,W), representing a P2ACSR process P in world W. The semantics is given in terms of a
labeled transition system whose states are configurations and whose transitions are either probabilistic or
nondeterministic.

The intuition for the semantics is as follows: for a P2ACSR process P, we begin with the configuration
(P,∅). As computation proceeds, probabilistic transitions are performed to determine the status of
resources which are immediately relevant for execution but for which there is no knowledge in the
configuration's world. Once the status of a resource is determined by some probabilistic transition, it
cannot change until the next timed action occurs. Once a timed action occurs, the state of resources has to
be determined anew, since in each time unit P2ACSR assumes that resources can fail independently from
any previous failures. Nondeterministic transitions (which can be events or actions) may be performed
from configurations that contain all necessary knowledge regarding the state of resources.

We illustrate the rules of the semantics with an example. Consider the process FC in its initial state (FC,∅).
This configuration has no immediately relevant resources. Hence, it can initially engage into one of two
nondeterministic transitions, one labeled by the event (in,1) leading to state (FC’,∅) and an idling action,
labeled by ∅ leading back to itself:

We continue with configuration (FC’,∅). Its immediately relevant resources are {cpu}. Since no
information is contained in the configuration’s world about cpu, we make two probabilistic transitions that

determine the possible worlds of the resource, that is {cpu} and { cpu }.

The resulting configurations allow one (initial) transition each

),(φFC

)1,(

out
),'(φFC

)1(in,

}){,(cpuP

0.99 0.01

),).1.((
_____ φFCout

)}1,1,{(cpu

φ

}){,(cpuP

)}2,1,{(cpu

FC
def

= (in,1). FC’ + ∅ :FC

FC’
def

= {(cpu,1,2)} : (out ,1). FC

 + {(cpu ,1,1)} : FC

}){,'(),'(}){,'(),'(
__

)()(cpuFCFCcpuFCFC p
cpu

p
cpu → → ππ φφ

),(),(}),'(),()1,(φφφφ φ FCFCFCFC in → →

),(}){,'(),).1,((){,'()}1,1,{(
__

)}2,1,{(φφ FCcpuFCFCoutcpuFC cpucpu → →

and finally

The complete transition system, for π(cpu)=0.99, can be seen in Figure 2.2.(b).

The prioritized transition system is based on preemption, which incorporates our treatment of
synchronization, resource sharing, and priority. The definition of preemption is straightforward. Let p ,
called the preemption relation, be a transitive, irreflexive, binary relation on actions. Then for two actions
α and β, if αp β, we can say that α is preempted by β. This means that in any real-time system, if there is a
choice between executing either α or β, β will always be executed. Examples of the preemption relation,
whose precise definition can be found in [2], include the following:
1. {(r 1,1,4),(r2,2,2)} p {(r 1,2,3),(r2,4,1)}: a timed action preempts another timed action if it uses the same

resources at a higher priority.
2. (a,1) p (a,4): an instantaneous event preempts any other event with the same label and lower priority.
3. {(r 1,1,4),(r2,2,2)} p (τ,1): an event labeled with τ and a nonzero priority preempts any timed action.

We define the prioritized transition system “→n”, which refines “→”, to account for preemption as follows:

'CC n→α if and only if 'CC →α is an unprioritized transition, and there is no unprioritized transition

'CC →β with α p β.

EDF Scheduler Example. The next example comes from the area of schedulability analysis. The example
describes a set of periodic tasks scheduled according to the Earliest Deadline First (EDF) [6] scheduling
policy. This policy assigns dynamic priorities to the tasks based on how close they are to their deadlines.
Each task Ti has a period pi, a worst-case execution time ci, and a deadline di by which the execution must
be completed. Deadlines for all tasks are assumed to be equal to their periods.

A task set is modeled as a collection of processes T1,…,Tn, one process for each task. All tasks share the
same processor, modeled by the resource cpu. No other tasks use the processor. A task is represented as
the process Ti, shown below, and represented pictorially in Figure 2.3.

},,0{},,0{},,1{

},,1{

},,1{

},,1{

},,1{

):

:)}0,1,(),0),(,{(

:)}0,1,(),0),(,({(

).0,(:

:).,(

}]{\)|[(

1,,

max

1,1,max,,

0,0,

},{

ii
ii

tei

ii

teiiitei

iiii

i
p

ii

contcpuiiii

ptceni

ni

ni

ni

ni

Jobce

Exec

Jobconttppcpu

ExecconttppcpuceExec

ExecstartJobJob

ActuatoristartActuator

startActuatorJobT

i

KKK

K
K
K
K

===

=
=
=
=

→=+
∅+

−−+

−−→<=
+∅=

∅=

=

+

++

Each Ti is a parallel composition of two processes: Jobi and Activatori. The role of the activator is to keep
track of the timing constraint of the task. At the beginning of every period, Activatori sends the signal starti

to Jobi, releasing the task for execution. It then idles for the period duration pi and repeats the cycle. If the
task has not finished its executionby the end of the period, it will not be able accept the next starti signal,
resulting in a deadlock that will signify a scheduling failure. This is because in a parallel composition of
processes a timed action can only occur if all processes can engage in a timed action. However, here,
Actuatori can only send signal starti, whereas Execi,e,t can only engage in a timed action, thus bringing the
process to a deadlock.

Upon receiving the starti signal, the other process, Jobi, begins the execution of the task. The execution
process has two additional parameters: e is the accumulated execution time and t is the elapsed time. At
each time step, the task has a priority that is increased as the task approaches its deadline. The task that has

),(),).1,(()1,(φφ FCFCout out →

been released t time units ago has pi - t time units remaining until the deadline, and has priority pmax – (pi -
t), where pmax=max(p1,…,pn)+1. When the task receives the processor resource, it executes for one time
unit and its accumulated execution time e, is increased together with the elapsed time t. At any time step,
the task can be interrupted by another task that has a closer deadline. In this case, the task makes an idling
step and its accumulated execution time stays the same while the elapsed time is increased.

teiExec ,,iJob

()istarti ,

?ice =

0,0 == te

?ice <

∅1+= tt

)}0,1,(),0),(,{(max conttppcpu i −−1,1 +=+= eett

)}0,1,(),0),(,{(max conttppcpu i −−

iActuator

),(istart

ip∅

cpu,cont

∅

st
ar

t

Figure 2.3. A model of an EDF task set

In order to model variable task-execution time, we introduce a probability distribution on the time it takes
to complete the task. For simplicity, we assume that the execution time of a task conforms to the geometric
distribution. That is, after every execution step, the task may complete with probability π and continue its
execution with probability 1−π. Thus, the probability that the task takes i time units to execute is

ππ ⋅− −1)1(i . We assume that this distribution is the same for all tasks. We introduce an additional

resource cont that represents the continuation of task execution. When the resource fails, the task
completes its execution and becomes Jobi. Otherwise, the execution continues, up to the worst-case
execution time.

The well-known results from [6] state that a set of tasks is schedulable if the utilization of the task set,
Ui = Σiε {1..n}ci/pi, does not exceed 1. The task set from our example satisfies this criterion, and, by checking
the resulting process for the absence of deadlocks, we can indeed verify that all deadlines are met. Our
method can be used to do the schedulability analysis of tasks that can block each other due to
synchronization under EDF as well other scheduling algorithms.

3. Analysis

We can perform various kinds of analysis of power-aware real-time systems within the P2ACSR formalism.
As already mentioned in the example of the previous section, we can perform schedulability analysis of
P2ACSR processes to determine whether or not a real-time system with a particular scheduling discipline
misses any of its deadlines. This kind of analysis can be carried out using deadlock-detection and/or
equivalence checking of P2ACSR processes. Deadlock detection can be performed by traversing the
transition system of the process and looking for deadlocked states. On the other hand, equivalence checking
is a verification technique aimed at deciding whether one system implements another with respect to some

notion of implementation relation. Among various implementation relations, strong and weak bisimulations
have been defined and algorithms are given for their automatic verification (see [11] for example). It has
been shown that bisimulations are useful in the schedulability analysis of real-time systems [7].

Another technique for analyzing P2ACSR properties of specifications is model checking. Model checking is
used to determine whether a system specification satisfies a property typically expressed as a temporal
logic formula. To allow model checking on P2ACSR specifications, we have introduced a probabilistic
temporal logic that allows one to express power consumption constraints. The logic allows us to express,
for example, that the power consumption of a system executing a given sequence of events never exceeds
some threshold, or that probability of exceeding the threshold is small. The logic and its model-checking
algorithm are presented in [10].

An additional useful metric for evaluating the power-consumption behavior of a process is that of bounds
of power consumption over a fixed interval of time. It is possible to compute such bounds (the minimum
and maximum power consumption during a time period) by traversing and analyzing the labeled transition
system (i.e., labeled concurrent Markov chain) of a process, in time polynomial to the number of states of
the transition system. Details can be found in [10].

Example. Consider the two systems in Figure 3.1. Each system repeatedly accesses a resource and signals
success after each use. The system P employs a highly reliable resource r that never fails, π(r)=1, but
requires a large amount of power to use it. On the other hand, the system Q uses a less reliable resource r'
with π(r') = ½ that consumes less power.

(a)
(b)

Figure 3.1. (a) P2ACSR description of systems P and Q and (b) their transition systems.

Analyzing the transition systems, we see that, although Q risks a delay in successfully using resource r’, it
consumes less power on average than P per successful resource use. Using our temporal logic, we check

the property that the system eventually performs a succ event with probability 1 and consumes at most 1
unit of power by that time. This property is satisfied by Q but not by P. On the other hand, the property that

the system can perform a succ event within 2 time units with probability ¾, while consuming 2 units of
power, is satisfied by both P and Q. Finally, if the probability is increased from ¾ to 1, the property is
satisfied by P but not by Q.

4. Power-Aware Real-Time Scheduling

In this section, we illustrate the use of P2ACSR in the modeling and analysis of a power-aware application.
The algorithm of power-aware scheduling is taken from [1] and uses dynamic voltage scaling [5] to
optimize power consumption in an embedded real-time system. Dynamic voltage scaling allows us to
make a tradeoff between performance and power consumption. A CMOS-based processor operating on a

P
def

= {(r,1,2)}: (succ ,1).P

Q
def

= {(r’,1,1)} : (succ ,1).Q
 + {('r ,1,0)} : (succ ,1). Q

1

),(φP

)1,(

succ

}){,(rP

)}2,1,{(r

),).1.((
_____ φPsucc

)1,(

succ

)}1,1,'{(r

),(φQ

})'{,(rQ

),).1.((
_____ φQsucc

})'{,(rQ

)} 0,1,'{(r

½ ½

lower frequency can use a lower supply voltage and thus consume less power. At the same time, a lower-
frequency execution means that tasks take longer to compute. If the system has real-time requirements
associated with it, these requirements may become violated at lower frequency. A power-aware real-time
operating system has to decide when it is possible to operate at a lower frequency while at the same time
maintaining the timing properties of the system.

Pillai and Shin propose extensions to real-time scheduling algorithms to make use of dynamic voltage
scaling [1]. We use their approach to extend the model of an EDF task set presented in Section 2 to utilize
cycles unused by the tasks to lower the operating frequency for other tasks. The ratios of execution time to
period in each task define the nominal utilization of the processor by the task set that determines whether
the tasks can be scheduled. In reality, tasks often take much less than the worst case to execute. Thus, the
effective utilization of the task set may be much lower than the nominal one. When the processor operates
at a lower frequency, execution times of tasks grow accordingly. This may increase the nominal utilization
so much that the task set may be considered no longer schedulable. However, the effective utilization may
still be small enough even at a lower frequency. The power-aware scheduling algorithm of [1] computes
effective utilization during execution and switches frequencies to use the lowest frequency for which the
task set remains effectively schedulable.

The algorithm of [1] recomputes the operating frequency every time a task is released for execution or ends
its execution in the current period based on the effective utilization of each task. Initially, and upon release
of a task, its effective utilization is set to the largest value,

iii pcU /= . When the task ends a period, Ui is

set to the actual utilization
i

act pc / . Then, it selects the least operating frequency fi for the processor such

that
min ffUU /1 ≤++K , where fm is the largest possible operating frequency.

We now show how to represent this algorithm as a P2ACSR process. We first extend the model of a task
with the ability to execute faster or slower depending on the state of the system. The task is similar to the
one shown in Section 2, except that one execution can take one time unit or two time units depending on
the operating frequency of the processor. The task uses events fast and slow to determine whether the
processor is in the fast or slow mode. If the processor is in the slow mode, the next computation step takes
two time units. The task Ti uses two additional events, releasei and endi,j. These events are used to drive
the voltage-scaling algorithm and correspond to the release of task Ti and the completion of Ti after j time
units, respectively.

Resources used in the model of the task, cpu and cont, do not consume power since both of them represent
abstract notions: scheduling priorities and probabilistic completion. Power consumed by the processor is
captured by a separate resource power that is used by the process DVS described below. The process DVS,
shown in Figure 4.1, consists of two parallel components. One subprocess, represented by the
process

321 ,, eeeScale , represents the voltage-scaling algorithm itself. Triggered by an event releasei or endi,j

that corresponds to the release or completion, respectively, of the task Ti after executing for j time units, the
process SetNew computes the effective utilization. It sends the signal fdown if a lower operating frequency is
possible and the signal fup otherwise. The other component of the process DVS keeps the information of the
current operating frequency. It has two states, DVSfast and DVSslow. In the former state, the process uses the
resource power at the power consumption level of pwfast, and in the latter state, it uses the same resource
with power consumption of pwslow, where pwfast and pwslow are parameters of the model. Note that the
priority of events fup and fdown is greater than the priority of events fast and slow. This ensures that the tasks
always receive the latest status of the processor.

)},1,{(fastpwpower)},1,{(slowpwpower

)0,(upf

)0,(downf

)0,(downf)0,(upf

slowDVSfastDVS

)1,(fast)1,(slow

321 ,, eeeScale
321 ,, eeeSetNew

f do
w

n

f u
p

slow

fast

irelease

jiend ,

power

∅

)0,(irelease ii ce =

)0,(, jiend jei =

)2,(upf

)2,(downf

∑ ≥ 2/1/ ii pe

∑ < 2/1/ ii pe

Figure 4.1. P2ACR representation of voltage scaling

Analysis. We explored the set of three tasks with parameters shown in Table 1. First, we checked that the
task set is schedulable by the power-aware scheduling algorithm. The resulting system does not have any
deadlocks, which means that all timing constraints are satisfied. We also calculated the expected power
consumption of the task set for the duration of one major frame, that is, the product of periods of all tasks,

321 ppp ⋅⋅ , 1120 time units. The probability of the task completion after a computation step was taken to

be 1/3, and parameters pwfast and pwslow were 2 and 1, respectively. The expected minimum and maximum
power consumption was calculated to be 1906.66 and 1922.65, respectively. Without the dynamic voltage
scaling, when each step would take pwfast power units, the power consumption for the same period would
be 2240 units. As a result, expected savings from the dynamic voltage scaling are between 14% and 14.8%.

Task Execution time Period
1 3 8
2 3 10
3 1 14

Table 1. Example task set

5. Conclusions

Formal modeling and analysis of power-aware real-time systems offer important advantages in the design
of embedded systems. We have presented P2ACSR, process algebra for resource-oriented real-time systems.
The formalism allows one to model the power consumption of resources and perform power-oriented
analysis of a system's behavior. Since tool support is critical for the success of formal techniques, we are
extending the PARAGON toolset [8] allows the specification and analysis of P2ACSR processes.
We have implemented deadlock detection and equivalence checking of processes, as well as calculation of
the probabilistic bounds on power consumption. We plan to implement the model-checking algorithm in
near future.

One useful measure to be computed on P2ACSR specifications is that of long-run average performance.
Average behavior is particularly interesting for power consumption studies. Average power consumption
can be computed per unit of time or per period of time. It has already been shown in the literature how to
evaluate the long-run average behavior of a probabilistic system [9]. As future work, we intend to study the
adaptation of the above-mentioned techniqueto P2ACSR and implement it in the PARAGON toolset.

References

1. P. Pillai and K. G. Shin, Real-time dynamic voltage scaling for low-power embedded operating
systems, Proceedings of the 18th Annual ACM Symposium on Operating Systems Principles, 2001.

2. I. Lee, P. Brémond-Grégoire, and R. Gerber, A process-algebraic approach to the specification and
analysis of resource-bound real-time systems, Proceedings of the IEEE, Jan 1994, pp. 158-171.

3. A. Philippou, O. Sokolsky, R. Cleaveland, I. Lee, and S. Smolka, Probabilistic resource failure in
real-time process algebra, Proceedings of CONCUR ’98, August 1998, pp. 389-404.

4. M. Vardi, Automatic verification of probabilistic concurrent finite-state programs, Proceedings of
the 26th Annual Symposium on Foundations of Computer Science, 1985, pp. 327—338.

5. T. D. Burd and R. W. Brodersen, Energy efficient CMOS microprocessor design, Proceedings of
the 28th Annual Hawaii International Conference on System Sciences. Volume 1: Architecture, pp.
288-297, IEEE Computer Society Press, 1995.

6. C. L. Liu and J. W. Layland, Scheduling algorithms for multiprogramming in a hard real-time
environment, Journal of the ACM, 20(1), pp. 46-61, 1973.

7. J-Y. Choi and I. Lee and H-L Xie, The Specification and Schedulability Analysis of Real-Time
Systems using ACSR. In Proc. of the Real-Time Systems Symposium. IEEE Computer Society
Press, 1995.

8. O. Sokolsky, I. Lee, and H. Ben-Abdallah, Specification and Analysis of Real-Time Systems with
PARAGON, Annals of Software Engineering, 7:211-234, 1999.

9. L. de Alfaro, How to Specify and Verify the Long-Run Average Behavior of Probabilistic
Systems, Proceedings of the 13th Annual IEEE Symposium on Logic in Computer Science, pp.
454-465. IEEE Computer Society Press, 1998.

10. I. Lee, A. Philippou and O. Sokolsky, Formal Mdodeling and Analysis of Power-Aware Real-
Time Systems. Technical Report, MIS-CIS-02-12, Department of Computer and Information
Science, University of Pennsylvania, 2002.

11. A. Philippou, O. Sokolsky and I. Lee, Weak Bisimulation for Probabilistic Systems. In Proc. of
CONCUR’00, pages 334-339. LNCS 1877, Springer Verlag, 2000.

Insup Lee and Oleg Sokolsky are with the Department of Computer and Information Science, University of
Pennsylvania, USA, {lee,sokolsky}@cis.upenn.edu. Anna Philippou is with the Department of
Computer Science, University of Cyprus, Cyprus, annap@ucy.ac.cy. This research was supported in
part by ARO DAAD19-01-1-0473, NSF CCR-9988409, NSF CCR-0086147, NSF CISE-9703220, and
ONR N00014-97-1-0505.

	University of Pennsylvania
	ScholarlyCommons
	August 2002

	Process Algebraic Modeling and Analysis of Power-Aware Real-Time Systems
	Insup Lee
	Anna Philippou
	Oleg Sokolsky
	Recommended Citation

	Process Algebraic Modeling and Analysis of Power-Aware Real-Time Systems
	Abstract
	Keywords
	Comments

	tmp.1114447503.pdf.IJNZG

