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Figure 1: Distinguishing probabilistic automata

1 Introduction
Compositional theories have been an important technique to deal with complex stochastic systems
effectively. Their potential ranges from compositional minimization [6, 4] approaches to com-
ponent based verification [26, 21]. Due to their expressiveness, Markov automata have attracted
many attentions [33, 13, 19], since they were introduced [16]. Markov automata are a composi-
tional behavioral model for continuous time stochastic and non-deterministic systems [15, 16]
subsuming interactive Markov chains (IMCs) [23] and probabilistic automata (PAs) [31] (and
hence also Markov decision processes and Markov chains).

On Markov automata, weak probabilistic bisimilarity has been introduced as a powerful way
for abstracting from internal computation cascades, and this is obtained by relating sub-probability
distributions instead of states. In the sequel we call this relation weak distribution bisimulation,
and focus on probabilistic automata, arguably the most widespread subclass of Markov automata.
Nevertheless all the results we establish carry over to Markov automata.

On probabilistic automata, weak distribution bisimilarity is strictly coarser than weak bisimi-
larity, and is the coarsest congruence preserving trace distribution equivalence [8]. More precisely,
it is the coarsest reduction-closed barbed congruence [25] with respect to parallel composition.
Decision algorithms for weak distribution bisimilarity have also been proposed [14, 29].

Weak distribution bisimilarity enables us to equate automata such as the ones on the left
in Fig. 1, both of which exhibit the execution of action α followed by states r1 and r2 with
probability 1

2 each for an external observer. Specifically, the internal transition of the automaton
on the left remains fully transparent. Standard bisimulation notions fail to equate these automata.
Surprisingly, the automata on the right are not bisimilar even though the situation seems to be
identical for an external observer.

The automata on the right of Fig. 1 are to be distinguished, because otherwise compositionality
with respect to parallel composition would be broken. However, as observed in [31, 18], the
general scheduler in the parallel composition is too powerful: the decision of one component may
depend on the history of other components. This is especially not desired for partially observable
systems, such as multi-agent systems or distributed systems [3, 32]. In distributed systems, where
components only share the information they gain through explicit communication via observable
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actions, this behavior is unrealistic. Thus, for practically relevant models, weak distribution
bisimilarity is still too fine. The need to distinguish the two automata on the right of Fig. 1 is
in fact an unrealistic artifact, and this will motivate the definition of a coarser notion of equality
equating them.

In this paper, we present a novel notion of weak bisimilarity on PAs, called late distribution
bisimilarity, that is coarser than the existing notions of weak bisimilarity. It equates, for instance,
all automata in Fig. 1. As weak distribution bisimilarity is the coarsest notion of equivalence
that preserves observable behavior and is closed under parallel composition [8], late distribution
bisimilarity cannot satisfy these properties in their entirety. However, as we will show, for a natural
class of schedulers, late distribution bisimilarity preserves observable behavior, in the sense that
trace distribution equivalence (i) is implied by late distribution bisimilarity, and (ii) is preserved
in the context of parallel composition. This for instance implies that time-bounded reachability
properties are preserved with respect to parallel composition. The class of schedulers under which
these properties are satisfied is the intersection of two well-known scheduler classes, namely
partial information schedulers [7] and distributed schedulers [18]. Both these classes have been
coined as principal means to exclude undesired or unrealistically powerful schedulers. We provide
a co-inductive definition for late distribution bisimilarity which echoes these considerations on
the automaton level, thereby resulting in a very coarse, yet reasonable, notion of equality.

Related Work. Many variants of bisimulations have been studied for different stochastic models,
for instance Markov chains [1], interactive Markov chains [23], probabilistic automata [27, 31, 2],
and alternating automata [10]. These equivalence relations are state-based, as they relate states of
the corresponding models. Depending on how internal actions are handled, bisimulation relations
can usually be categorized into strong bisimulations and weak bisimulations. The later is our
main focus in this paper.

Markov automata arise as a combination of PAs and IMCs. In [16], a novel distribution-based
weak bisimulation has been proposed: it is weaker than the state-based weak bisimulation in [31],
and if restricted to continuous-time Markov chains, generates an equivalence established in the
Petri net community [13]. Later, another weak bisimulation has been investigated in [8], which
is essentially the same as [16]. In this paper, we propose a weaker bisimulation relation – late
distribution bisimulation, which is coarser than both of them.

Interestingly, after the distribution-based weak bisimulations being introduced in [16], sev-
eral distribution-based strong bisimulations have been proposed. In [22], it is shown that, the
strong version of the relation in [16] coincides with the lifting of the classical state-based strong
bisimulations. Recently, three different distribution-based strong bisimulations have been defined:
paper [17] defines bisimulation relations and metrics which extend the well-known language
equivalence [11] of labelled Markov chain; another definition in [24] applies to discrete systems
as well as to systems with uncountable state and action spaces; in [32], for multi-agent systems,
a decentralized strong bisimulation relation is proposed which is shown to be compositional
with respect to partial information and distributed schedulers. All these relations enjoy some
interesting properties, and they are incomparable to each other: we refer to [32] for a detailed
discussion. The current paper extends the decentralized strong bisimulation in [32] to the weak
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case. The extension is not trivial, as internal transitions need to be handled carefully, particularly
when lifting transition relations to distributions. We show that our novel weak bisimulation is
weaker than that in [16], and as in [32], we show that it is compositional with respect to partial
information and distributed schedulers.

Organization of the Paper Section 2 recalls some notations used in the paper. Late distribution
bisimulation is proposed and discussed in Section 3, and its properties are established in Section 4
under realistic schedulers. Section 5 concludes the paper. A discussion why all results established
in this paper directly carry over to Markov automata can be found in [12].

2 Preliminaries
Let S be a finite set of states ranged over by r, s, . . .. A distribution is a function µ : S → [0, 1]
satisfying µ(S ) =

∑
s∈S µ(s) = 1. Let Dist(S ) to denote the set of all distributions, ranged over by

µ, ν, γ, . . .. Define Supp(µ) = {s | µ(s) > 0} as the support set of µ. If µ(s) = 1, then µ is called
a Dirac distribution, written as δs. Let |µ| = µ(S ) denote the size of the distribution µ. Given
a real number x, x · µ is the distribution such that (x · µ)(s) = x · µ(s) for each s ∈ Supp(µ) if
x · |µ| ≤ 1, while µ − s is the distribution such that (µ − s)(s) = 0 and (µ − s)(r) = µ(r) with s , r.
Moreover, µ = µ1 + µ2 whenever µ(s) = µ1(s) + µ2(s) for each s ∈ S and |µ| ≤ 1. We often write
{s : µ(s) | s ∈ Supp(µ)} alternatively for a distribution µ. For instance, {s1 : 0.4, s2 : 0.6} denotes a
distribution µ such that µ(s1) = 0.4 and µ(s2) = 0.6.

2.1 Probabilistic Automata
Initially introduced in [31], probabilistic automata (PAs) have been popular models for systems
with both non-deterministic choices and probabilistic dynamics. Below we give their formal
definition.

Definition 1. A PA P is a tuple (S ,Actτ,−→, s̄) where

• S is a finite set of states,

• Actτ = Act
.
∪ {τ} is a set of actions including the internal action τ,

• −→ ⊂ S × Actτ × Dist(S ) is a finite set of probabilistic transitions, and

• s̄ ∈ S is the initial state.

Let α, β, γ, . . . range over the actions in Actτ. We write s
α
−→ µ if (s, α, µ) ∈ −→. A path is

a finite or infinite alternative sequence π = s0, α0, s1, α1, s2 . . . of states and actions, such that
for each i ≥ 0 there exists a distribution µ with si

αi
−→ µ and µ(si+1) > 0. Some notations are

defined as follows: |π| denotes the length of π, i.e., the number of states on π, while π ↓ is the
last state of π, provided π is finite; π[i] = si with i ≥ 0 is the (i + 1)-th state on π if it exists;
π[0..i] = s0, α0, s1, α1, . . . , si is the prefix of π ending at state π[i].
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Let Pathsω(P) ⊆ S × (Actτ × S )ω and Paths∗(P) ⊆ S × (Actτ × S )∗ denote the sets containing
all infinite and finite paths of P respectively. Let Paths(P) = Pathsω(P) ∪ Paths∗(P). We will
omit P if it is clear from the context. We also let Paths(s) be the set containing all paths starting
from s ∈ S , similarly for Paths∗(s) and Pathsω(s).

Due to non-deterministic choices in PAs, a probability measure cannot be defined directly. As
usual, we shall introduce the definition of schedulers to resolve the non-determinism. Intuitively,
a scheduler will decide which transition to choose at each step, based on the history execution.
Formally,

Definition 2. A scheduler is a function

ξ : Paths∗ 7→ Dist(Actτ × Dist(S ))

such that ξ(π)(α, µ) > 0 implies π ↓
α
−→ µ. A scheduler ξ is deterministic if it returns only Dirac

distributions, that is, ξ(π)(α, µ) = 1 for some α and µ. ξ is memoryless if π ↓= π′ ↓ implies
ξ(π) = ξ(π′) for any π, π′ ∈ Paths∗, namely, the decision of ξ only depends on the last state of a
path.

In this paper, we are restricted to schedulers satisfying the following condition: For any
π ∈ Paths∗, ξ(π)(α, µ) > 0 and ξ(π)(β, ν) > 0 imply α = β. In other words, ξ always chooses
transitions with the same label at each step. This class of schedulers suffices for our purpose.

Let π ≤ π′ iff π is a prefix of π′. Let Cπ denote the cone of a finite path π, which is the set of
infinite paths having π as their prefix, i.e.,

Cπ = {π′ ∈ Pathsω | π ≤ π′}.

Given a starting state s, a scheduler ξ, and a finite path π = s0, α0, s1, α1, . . . , sk, the measure Prξ,s
of a cone Cπ is defined inductively as:

• Prξ,s(Cπ) = 0 if s , s0;

• Prξ,s(Cπ) = 1 if s = s0 and k = 0;

• otherwise Prξ,s(Cπ) =

Prξ,s(Cπ[0..k−1]) ·

 ∑
(sk−1,αk−1,µ)∈−→

ξ(π[0..k − 1])(αk−1, µ) · µ(sk)

 .
Let B be the smallest algebra that contains all the cones and is closed under complement and

countable unions. By standard measure theory [20, 28], this algebra is a σ-algebra and all its
elements are measurable sets of paths. Moreover, Prπ,s can be extended to a unique measure on B.

Large systems are usually built from small components. This is done by using the parallel
operator of PAs [31].

Definition 3. Let P1 = (S 1,Actτ,−→1, s̄1) and P2 = (S 2,Actτ,−→2, s̄2) be two PAs and A ⊆ Act,
then P1 ‖A P2 = (S ,Actτ,−→, s̄) such that
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• S = {s1 ‖A s2 | (s1, s2) ∈ S 1 × S 2},

• s1 ‖A s2
α
−→ µ1 ‖A µ2 iff

– either α ∈ A and ∀i ∈ {1, 2}.si
α
−→i µi,

– or α < A and ∃i ∈ {1, 2}.(si
α
−→i µi and µ3−i = δs3−i).

• s̄ = s̄1 ‖A s̄2,

where µ1 ‖A µ2 is a distribution such that (µ1 ‖A µ2)(s1 ‖A s2) = µ1(s1) · µ2(s2).

2.2 Trace Distribution Equivalence
In this subsection we introduce the notion of trace distribution equivalence [30] adapted to our
setting with internal actions. Let ς ∈ Act∗ denote a finite trace of a PA P, which is an ordered
sequence of visible actions. Each trace ς induces a cylinder Cς which is defined as follows:

Cς = ∪{Cπ | π ∈ Paths∗ ∧ trace(π) = ς}

where trace(π) = ε denotes an empty trace if |π| ≤ 1, and

trace(π) =

trace(π′) π = π′ ◦ (τ, s′)
trace(π′)α π = π′ ◦ (α, s′) ∧ α , τ

.

Since Cς is a countable set of cylinders, it is measurable. Below we define trace distribution
equivalences, each of which is parametrized by a certain class of schedulers.

Definition 4. Let s1 and s2 be two states of a PA, and S a set of schedulers. Then, s1 ≡S s2 iff
for each scheduler ξ1 ∈ S there exists a scheduler ξ2 ∈ S , such that Prξ1

s1(Cς) = Prξ2
s2(Cς) for each

finite trace ς and vice versa. If S is the set of all schedulers, we simply write ≡.

Different from [30, 32], we abstract internal transitions when defining traces of a path. There-
fore, the definition above is also a weaker version of the corresponding definition in [30, 32].

2.3 Partial Information and Distributed Schedulers
In this subsection we define two prominent sub-classes of schedulers, where the power of sched-
ulers are limited. We first introduce some notations. Let EA : S 7→ 2Act such that

EA(s) = {α ∈ Act | ∃µ.s
α

=⇒ µ},

that is, the function EA returns the set of visible actions that a state is able to perform, possibly
after some internal transitions. We generalize this function to paths as follows: EA(π) =

EA(s) π = s (1)
EA(π′) π = π′ ◦ (τ, s) ∧ EA(π′ ↓) = EA(s) (2)
EA(π′)αEA(s) π = π′ ◦ (α, s) ∧ (α , τ ∨ EA(π′ ↓) , EA(s)) (3)
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where case (2) takes care of a special situation such that internal actions do not change enabled
actions. In this case EA will not see the difference. Intuitively, EA(π) abstracts concrete states on π
to their corresponding enabled actions. Whenever an invisible action does not change the enabled
actions, this will simply be omitted. In other words, EA(s) can be seen as the interface of s, which
is observable by other components. Other components can observe the execution of s, as long as
either it performs a visible action α , τ, or its interface has been changed (EA(π′ ↓) , EA(s)). We
are now ready to define the partial information schedulers [7] as follows:

Definition 5. A scheduler ξ is a partial information scheduler of s if for any π1, π2 ∈ Paths∗(s),
EA(π1) = EA(π2) implies:

• either ξ(π1) = (τ, µ) or ξ(π2) = (τ, µ) for some µ,

• or ξ(π1) = (α, µ) and ξ(π2) = (α, ν) for some µ, ν such that α , τ.

ξ is a partial information scheduler of a PA P iff it is a partial information scheduler for every
state of P.

We denote the set of all partial information schedulers by SP. Intuitively a partial information
scheduler can only distinguish states via different enabled visible actions. A scheduler cannot
choose different transitions of states only because they have different state identities. This fits
very well to a behavior-oriented rather than state-oriented view, as it is typical for process calculi.
Consequently, for two different paths π1 and π2 with EA(π1) = EA(π2), a partial information
scheduler either chooses a transition labelled with τ action for πi (i = 1, 2), or it chooses
transitions labelled with the same visible actions for both π1 and π2. Partial information schedulers
do not impose any restriction on the execution of τ transitions, instead they can be performed
spontaneously.

When composing parallel systems, general schedulers defined in Definition 2 allow one
component to make decisions based on full information of other components. This may be
unrealistically powerful as argued in [18]. To deal with this, another important sub-class of
schedulers called distributed schedulers has been introduced [18]. The main idea is to assume that
all parallel components run in autonomous and can only make their local scheduling decisions in
isolation. In other words, each component can use only that information about other components
that has been conveyed to it beforehand. We omit the formal definition of distributed schedulers,
which can be found in [18] or [32]. In the sequel we let SD denote the set of all distributed
schedulers.

3 Weak Bisimilarities for Probabilistic Automata
In this section, we first introduce weak distribution bisimulation, which is a variant of weak
bisimulation defined in [8], and then define late distribution bisimulation, which is strictly coarser
than weak distribution bisimulation.

8
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3.1 Weak Distribution Bisimulation
As usual, a standard weak transition relation is needed in the definitions of bisimulation that
allows one to abstract internal actions. Intuitively, s

α
=⇒ µ denotes that a distribution µ is reached

from s by a α-transition, which may be preceded and followed by an arbitrary sequence of internal
transitions. Formally, we define them as derivations [9] for PAs. In the following, let µ

α
−→ µ′

iff there exists a transition s
α
−→ µs for each s ∈ Supp(µ) such that µ′ =

∑
s∈Supp(µ) µ(s) · µs. Then,

s
τ

=⇒ µ iff there exists
δs = µ→0 + µ×0 ,

µ→0
τ
−→ µ→1 + µ×1 ,

µ→1
τ
−→ µ→2 + µ×2 ,
. . .

where µ =
∑

i≥0 µ
×
i . We write s

α
=⇒ µ iff there exists s

τ
=⇒

α
−→

τ
=⇒ µ.

Given a transition relation ⊆ S ×Actτ×Dist(S ), we let s
α
 c µ iff there exists a finite number

of real numbers wi > 0, and transitions s
α
 µi such that

∑
i wi = 1, and

∑
i wi · µi = µ. We call

 c combined transitions (of ). In general, we lift a transition relation ⊆ S × Actτ × Dist(S )
over states to a transition relation Dist(S ) × Actτ ×Dist(S ) over distributions by letting µ

α
 µ′ iff

there exists a transition s
α
 µs for each s ∈ Supp(µ) such that µ′ =

∑
s∈Supp(µ) µ(s) · µs.

Definition 6. R ⊆ Dist(S ) × Dist(S ) is a weak distribution bisimulation iff µ R ν implies:

1. whenever µ
α
−→c µ

′, there exists a ν
α

=⇒c ν
′ such that µ′ R ν′;

2. whenever µ =
∑

0≤i≤n pi · µi, there exists a ν
τ

=⇒c
∑

0≤i≤n pi · νi such that µi R νi for each
0 ≤ i ≤ n where

∑
0≤i≤n pi = 1;

3. symmetrically for ν.

We say that µ and ν are weak distribution bisimilar, written as µ •≈ ν, iff there exists a weak
distribution bisimulation R such that µ R ν. Moreover s •≈ r iff δs

•≈ δr.

Clause 1 is standard. Clause 2 says that no matter how we split µ, there always exists a
splitting of ν probably after internal transitions to simulate the splitting of µ. Definition 6 is
slightly different from Definition 5 in [8], where clause 2 is missing and clause 1 is replaced by:
whenever µ

α
=⇒c

∑
0≤i≤n pi · µi, there exists ν

α
=⇒c

∑
0≤i≤n pi · νi such that µi R νi for each 0 ≤ i ≤ n.

Essentially, this condition subsumes clause 2, since µ =
∑

0≤i≤n pi · µi implies µ
τ

=⇒c
∑

0≤i≤n pi · µi.
As we prove in the following lemma, both definitions induce the same equivalence relation on
PAs.

Lemma 1. Let P = (S ,Actτ,−→, s̄) be a PA. R ⊆ Dist(S ) × Dist(S ) is a weak distribution
bisimulation iff µ R ν implies that

1. whenever µ
α

=⇒c µ
′, there exists ν

α
=⇒c ν

′ such that µ′ R ν′,

9
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2. whenever µ =
∑

0≤i≤n pi · µi, there exists ν
τ

=⇒c
∑

0≤i≤n pi · νi such that µi R νi for each
0 ≤ i ≤ n where

∑
0≤i≤n pi = 1,

3. symmetrically for ν.

Proof. Let R ⊆ Dist(S ) × Dist(S ). If R is a weak distribution bisimulation by Lemma 1, then
trivially we can show that R is also a weak distribution bisimulation by Definition 6, since
−→c ⊂ =⇒c. In the sequel, we let R be a weak distribution bisimulation by Definition 6 and we
show that R also satisfies conditions of Lemma 1. Let µ R ν. It suffices to show that whenever
µ

α
=⇒c µ

′, there exists a ν
α

=⇒c ν
′ such that µ′ R ν′,

Assume α = τ. According to the definition of derivations (P. 9), µ
τ

=⇒c µ
′ iff there exists

µ = µ→0 + µ×0 ,

µ→0
τ
−→c µ

→
1 + µ×1 ,

µ→1
τ
−→c µ

→
2 + µ×2 ,

...

(4)

such that µ′ ≡
∑

i≥0 µ
×
i . By Definition 6, ν can simulate such a derivation at each step, namely,

there exists
ν

τ
=⇒c ν

→
0 + ν×0 ,

ν→0
τ

=⇒c ν
→
1 + ν×1 ,

ν→1
τ

=⇒c ν
→
2 + ν×2 ,

...

(5)

such that µ→i R ν
→
i and µ×i R ν

×
i for each i ≥ 0. Note R satisfies infinite linearity, which can

be proved in a similar way as [8, Thm. A.6]. Therefore, (
∑

i≥0 µ
×
i ) R (

∑
i≥0 ν

×
i ). Since =⇒c is

transitive [8, Thm. A.4], there exists ν
τ

=⇒c ν
′ such that µ′ R ν′ as desired.

In case µ
α

=⇒c µ
′ with α , τ, we have µ

τ
=⇒c µ

′
1

α
−→c µ

′
2

τ
=⇒c µ

′. As shown above, there
exists ν

τ
=⇒c ν

′
1 such that µ′1 R ν

′
1, which indicates that there exists ν′1

α
=⇒c ν

′
2 such that µ′2 R ν

′
2

by Definition 6, which indicates that there exists ν′2
τ

=⇒c ν
′ such that µ′ R ν′. This completes the

proof. �

The above lemma implies the transitivity of the weak distribution bisimulation, and will be
useful for establishing different bisimulation relations.

3.2 Late Weak Bisimulation
Clause 2 in Definition 6 allows arbitrary splittings, which is essentially the main reason that weak
distribution bisimulation is unrealistically strong. In order to establish a bisimulation relation,
all possible splittings of µ must be matched by ν (possibly after some internal transitions). As
splittings into Dirac distributions are also considered, the individual behaviors of each single

10
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state in Supp(µ) must be matched too. However, our bisimulation is distribution-based, thus the
behaviors of distributions should be matched rather than those of states. We will fix this in the
definition of late distribution bisimulation. Before that, we still need some notations.

Definition 7. A distribution µ is transition consistent, written as −→µ , if for any s ∈ Supp(µ) and
α , τ, s

α
=⇒ γ for some γ implies µ

α
=⇒ γ′ for some γ′.

For a distribution being transition consistent, all states in the support of the distribution should
have the same set of enabled visible actions. One of the key properties of transition consistent
distributions is that µ

α
=⇒ whenever s

α
=⇒ for some state s ∈ Supp(µ). In contrast, when a

distribution µ is not transition consistent, there must be a weak α transition of some state in
Supp(µ) being blocked. In the sequel, when we adopt the notion of blocked states accordingly for
non-weak transition relations, also τ transitions can be blocked.

We now introduce ↪→, an alternative lifting of transitions of states to transitions of distributions
that differs from the standard definition used in [16, 8]. There, a distribution is able to perform a
transition labelled with α if and only if all the states in its support can perform transitions with the
very same label. In contrast, the transition relation ↪→ behaves like a weak transition, where every
state in the support of µ may at most perform one transition.

Definition 8. µ
α
↪→ µ′ iff

1. either for each s ∈ Supp(µ) there exists s
α
−→ µs such that

µ′ =
∑

s∈Supp(µ)

µ(s) · µs,

2. or α = τ and there exists s ∈ Supp(µ) and s
α
−→ µs such that

µ′ = (µ − s) + µ(s) · µs.

In the definition of late distribution bisimulation, this extension will be used to prevent τ
transitions of states from being blocked. Below follows an example:

Example 1. Let µ = {s1 : 0.4, s2 : 0.6} such that s1
τ
−→ δs′1

α
−→ µ1, s1

β
−→ µ2, s2

α
−→ µ3, and

s2
β
−→ µ4, where α , β are visible actions. According to clause 1 of Definition 8, we will have

µ
β
↪→ (0.4 · µ2 + 0.6 · µ4). Without clause 2, this would be the only transition of µ, since the

τ transition of s1 and the α transition of s2 will be blocked by each other, as s1 and s2 cannot
perform transitions with labels τ and α at the same time.

Note that the α transition is blocked by the τ transition of s1, so according to clause 2 of
Definition 8, we in addition have

µ
τ
↪→ (0.4 · δs′1

+ 0.6 · δs2)
α
↪→ (0.4 · µ1 + 0.6 · µ3).

Note that in clause 1 of Definition 6, −→ can be replaced by ↪→ without changing the resulting
equivalence relation, as the same effect can be obtained by a suitable splitting in clause 2. In this
example, we could let µ be split into 0.4 · δs1 + 0.6 · δs2 , such that no transition is blocked in the
resulting distributions. �

11
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Definition 9. R ⊆ Dist(S ) × Dist(S ) is a late distribution bisimulation iff µ R ν implies:

1. whenever µ
α
↪→c µ

′, there exists a ν
α

=⇒c ν
′ such that µ′ R ν′;

2. if not −→µ , then there exists µ =
∑

0≤i≤n pi · µi and ν
τ

=⇒c
∑

0≤i≤n pi · νi such that −→µi and µi R νi

for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;

3. symmetrically for ν.

We say that µ and ν are late distribution bisimilar, written as µ ≈• ν, iff there exists a late
distribution bisimulation R such that µ R ν. Moreover s ≈• r iff δs ≈

• δr.

In clause 1, this definition differs from Definition 6 by the use of ↪→. It is straightforward
to show that ↪→ can also be used in Definition 6 without changing the resulting bisimilarity.
However, in Definition 9, using −→ instead of ↪→ will lead to a finer relation. The key difference
between Definition 6 and 9, however, is clause 2. As we mentioned, in Definition 6, any split of
µ should be matched by ν, while in Definition 9, we require to split µ only if it is not transition
consistent. Additionally, the resulting distributions µi must be transition consistent as well. We
do not need to require that νi is transition consistent, as we will show later that −→µi and µi R νi

implies −→νi . According to Definition 7, splittings to transition consistent distributions ensure that all
possible transitions will be considered eventually, as no transition of individual states is blocked.
Therefore, clause 1 suffices to capture every visible behavior.

By introducing transition consistent distributions, we try to group states with the same set
of enabled visible actions together and do not distinguish them in a distribution. This idea
is mainly motivated by the work in [7], where all states with the same enabled actions are
non-distinguishable from the outside. Under this assumption, a model checking algorithm was
proposed. By avoiding splitting transition consistent distributions, we essentially delay the
probabilistic transitions until the transition consistent condition is broken. This explains the name
“late distribution bisimulation”. Further, if restricting to models without internal action τ, our
notion of late distribution bisimulate agrees with the decentralized bisimulations in [32].

The following theorem shows that ≈• is an equivalence relation and ≈• is strictly coarser than
•≈.

Theorem 1. 1. ≈• is an equivalence relation;

2. •≈ ⊂ ≈•.

Before proving Theorem 1, we shall introduce two lemmas. The lemma below resembles
Lemma 1, which can be proved similarly as Lemma 1.

Lemma 2. Let P = (S ,Actτ,−→, s̄) be a PA. R ⊆ Dist(S ) × Dist(S ) is a weak distribution
bisimulation iff µ R ν implies that

1. whenever µ
α

=⇒c µ
′, there exists ν

α
=⇒c ν

′ such that µ′ R ν′,

2. if not −→µ , then there exists µ =
∑

0≤i≤n pi · µi and ν
τ

=⇒c
∑

0≤i≤n pi · νi such that −→µi and µi R νi

for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;

12
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3. symmetrically for ν.

Proof. The proof is almost the same as Lemma 1 with two exceptions related to the transition
consistent requirement:

• In Eq. 4 and 5, derivations should respect the transition consistent requirement, namely,
states with the same set of enable actions should be in the support of either µ→i or µ×i ,
similarly for ν→i and ν×i .

• The infinite linearity of late distribution bisimulation can be proved as follows: Let

R = {(
∑
i≥0

pi · µi,
∑
i≥0

pi · νi) |
∑
i≥0

pi = 1 ∧ ∀i ≥ 0.µi ≈
• νi}.

We prove that R is a late distribution bisimulation. Let µ R ν. Suppose µ
α
−→c µ

′, then for all
i ≥ 0, there exists µi

α
−→c µ

′
i such that µ′ ≡

∑
i≥0 pi · µ

′
i . Since µi ≈

• νi, there exists νi
α

=⇒c ν
′
i

such that µ′i ≈
• ν′i , which implies that ν

α
=⇒c ν

′ ≡
∑

i≥0 pi · ν
′
i . Therefore, µ′ R ν′ by the

definition of R.

Now assume µ is not transition consistent and µ ≡
∑

1≤ j≤n q j · γ j such that −→γ j. Let µi ≡∑
1≤ j≤n qi

j · γ
i
j where

−→
γi

j, γ j =
∑

i≥0 qi
j · γ

i
j, and

∑
i≥0 qi

j = q j for each 1 ≤ j ≤ n. Then for

each i ≥ 0, there exists νi
τ

=⇒c
∑

1≤ j≤n qi
j · γ

′i
j such that

−→
γ′ij and γi

j ≈
• γ′ij. Therefore, there

exists ν
τ

=⇒c
∑

1≤ j≤n q j · γ
′
j, where γ′j ≡

∑
i≥0 qi

j · γ
′i

j. By construction of R, γ j R γ
′
j for each

1 ≤ j ≤ n as desired.

�

The following lemma states that µ and ν must be transition consistent or not at the same time,
if they are late distribution bisimilar.

Lemma 3. µ ≈• ν and −→µ imply −→ν .

Proof. By contraposition. Assume µ ≈• ν and −→µ , but not −→ν . Since µ ≈• ν, there exists a
late distribution bisimulation R such that µ R ν. Moreover, µ

α
=⇒ implies ν

α
=⇒ and vice versa

for any α. Therefore, EA(µ) = EA(ν), where EA(µ) = {α | ∃µ′.µ
α

=⇒ µ′}, similarly for EA(ν).
Since ν is not transition consistent, there exists s ∈ Supp(ν) such that s

α
=⇒ with α < EA(ν), i.e.,

some transitions of states in Supp(µ) with label α are blocked. This indicates that there exists
ν =
∑

i∈I pi · νi with −→νi for each i ∈ I such that ν j
α

=⇒ for some j ∈ I. Since −→µ and α < EA(µ), there
does not exist µ

τ
=⇒
∑

i∈I pi · µi such that µi
α

=⇒ for some i ∈ I. This contradicts the assumption
that µ ≈• ν. �

Finally, we are ready to show the proof of Theorem 1.

13
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Proof of Theorem 1. First, the second clause •≈ ⊂ ≈• is easy to establish: Since the second
condition of Definition 6 implies the second condition of Definition 9, but not vice versa. PA in
Fig. 1 shows that the inclusion is strict.

Now we prove that ≈• is an equivalence relation. We prove transitivity (other parts are easy).
For any µ, ν, and γ, assume µ ≈• ν and ν ≈• γ, we prove that µ ≈• γ. According to Definition 9,
there exists late distribution bisimulations R1 and R2 such that µ R1 ν and ν R2 γ. Let

R = R1 ◦ R2 = {(µ, γ) | ∃ν.(µ R1 ν ∧ ν R2 γ)},

it then suffices to prove that R is also a late distribution bisimulation.
Let µ R γ such that µ R1 ν and ν R2 γ for some ν. We shall prove:

1. Whenever µ
α

=⇒c µ
′, there exists γ

α
=⇒c γ

′ such that µ′ R γ′. This is achieved by applying
Lemma 3.

2. If not −→µ , there exists µ =
∑

i∈I pi · µi and γ
τ

=⇒c
∑

i∈I pi · γi such that µi R γi for each i ∈ I,
where

∑
i∈I pi = 1. Assume µ is not transition consistent; otherwise it is easy. Since µ ≈• ν,

there exists ν
τ

=⇒c
∑

i∈I pi · νi such that −→µi and µi R1 νi for each i ∈ I. By Lemma 3, −→νi for
each i ∈ I. We distinguish the following two cases:

(a) ν =
∑

i∈I pi · νi.
According to Lemma 3, ν is not transition consistent, and moreover, we have −→νi for
each i ∈ I. Since ν R2 γ, there exists γ

τ
=⇒c

∑
i∈I γi such that νi R2 γi, thus we have

µi R γi by the definition of R for each i ∈ I.

(b) ν
τ

=⇒c ν
′ =
∑

i∈I pi · νi.
Since ν R2 γ, there exists γ

τ
=⇒c γ

′ such that ν′ R2 γ
′ according to the first clause

of Definition 9. Since µ is not transition consistent, so there exists i, j ∈ I such that
i , j and EA(µi) , EA(µ j), which indicates that EA(νi) , EA(ν j). Therefore, ν′ is not
transition consistent. As a result there exists γ′

τ
=⇒c

∑
i∈I pi · γi such that νi R2 γi, thus

µi R γi for each i ∈ I.

This completes our proof. �

4 Properties of Late Distribution Bisimilarity
In this section we show that results established in [32] can be extended to the setting, where internal
transitions are abstracted. We concentrate on two properties of late distribution bisimulation:
compositionality and preservation of trace distributions. When general schedulers are considered,
the two properties do not hold, hence we will restrict ourselves to partial information distributed
schedulers. We mention that both partial information and distributed schedulers were proposed to
rule out unrealistic behaviors of general schedulers; see [7] and [18] for more details.

We first define some notations. To play with schedulers, we parameterize transition relations
with schedulers explicitly. A transition from s to µ with label α is induced by a scheduler ξ,

14
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written as s
α
−→ξ µ, iff µ ≡

∑
µ′∈Dist(S ) ξ(s)(α, µ′) · µ′. As before, such a transition relation can be

lifted to distributions: µ
α
−→ξ ν to denote that µ can evolve into ν by performing a transition with

label α under the guidance of ξ, where s
α
−→ξ νs for each s ∈ Supp(µ) and ν ≡

∑
s∈Supp(µ) µ(s) · νs.

Since no a priori information is available, given a distribution µ, for each s ∈ Supp(µ), we simply
use s as the history information for ξ to guide the execution, which correspond to memoryless
schedulers and suffice for the purpose of defining bisimulations. Moreover, weak transitions
s

α
=⇒ξ µ and their lifting to distributions can be defined similarly; see Section 3.1.

Below we define an alternative definition of Definition 9, where schedulers are considered
explicitly.

Definition 10. Let ξ1, ξ2, ξ ∈ S for a given set of schedulers S . R ⊆ Dist(S ) × Dist(S ) is a late
distribution bisimulation with respect to S iff µ R ν implies:

1. whenever µ
α
−→ξ1 µ

′, there exists ν
α

=⇒ξ2 ν
′ such that µ′ R ν′;

2. if not −→µ , then there exists µ =
∑

0≤i≤n pi · µi and ν
τ

=⇒ξ

∑
0≤i≤n pi · νi such that −→µi and µi R νi

for each 0 ≤ i ≤ n where
∑

0≤i≤n pi = 1;

3. symmetrically for ν.

We write µ ≈•S ν iff there exists a late distribution bisimulation R with respect to S such that µ R ν.
And we write s ≈•S r iff δs ≈

•
S δr.

Different from Definition 9, in Definition 10, every transition is induced by a scheduler
in S . Obviously, when S is the set of all schedulers, these two definitions coincide. Thus,
s1 ≈

• s2 ⇐⇒ s1 ≈
•
SD

s2, provided s1 and s2 contain no parallel operators, as in this case SD

represents the set of all schedulers.
Below is a theorem showing that distribution bisimulation and partial information schedulers

are closely related. It shows that partial information schedulers are enough to discriminate
late distribution bisimilarity with respect to arbitrary schedulers. Furthermore, late distribution
bisimulation implies trace distribution equivalence under partial information schedulers.

Theorem 2. For any states s1 and s2,

1. s1 ≈
• s2 iff s1 ≈

•
SP

s2;

2. s1 ≈
• s2 implies s1 ≡SP s2.

If looking at the effect of parallel composition, we can establish compositionality if distributed
schedulers are considered:

Theorem 3. For any states s1, s2, and s3,

s1 ≈
•
SD

s2 implies s1 ‖A s3 ≈
•
SD

s2 ‖A s3.

15
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As in the strong setting [32], by restricting to the set of schedulers in SP ∩ SD, late distribution
bisimulation is compositional and preserves trace distribution equivalence. Furthermore, late
distribution bisimulation is the coarsest congruence satisfying the two properties with respect to
schedulers in SP ∩ SD.

Theorem 4. Let S = SP∩SD. s1 ≈
•
S s2 iff s1 ≡

c
S s2 for any s1 and s2, where s1 ≡

c
S s2 iff s1 ≡S s2

and s1 ‖A s3 ≡S s2 ‖A s3 for any s1, s2, s3, and A.

We mention that schedulers in SP∩SD arise very natural in practice, for instance in decentralized
multiagent systems [3], where all agents are autonomous (corresponding to distributed schedulers)
and states are partially observable (corresponding to partial information schedulers).

In [24] an algorithm was proposed to compute distribution-based bisimulation relations. We
discuss briefly that the algorithm can also be adapted to compute late distribution bisimulation.
First observe that the relation ≈• is linear, namely, µ1 ≈

• ν1 and µ2 ≈
• ν2 imply (p·µ1+(1−p)·µ2) ≈

• (p · ν1 + (1 − p) · ν2) for any p ∈ [0, 1]. By fixing an arbitrary order on the state space of a given
PA, each distribution can be viewed as a vector in [0, 1]n with n being the number of states. Then
for any s and α, it is easy to see that {µ | s

α
−→ µ} constitutes a convex hull. According to [5, Prop. 3

and 4], every such convex hull has a finite number of extreme points, which can be enumerated by
restricting to Dirac memoryless schedulers. For deciding ≈•, it suffices to restrict to these finitely
many extreme distributions. By doing so, all weak transitions can be handled in the same way
as non-deterministic strong transitions in [24]. Not surprisingly, this will cause an exponential
blow-up. We refer readers to [24] for more details of the remaining procedure.

5 Conclusion and Future Work
In this paper, we proposed the notion of late distribution bisimilarity for PAs, which enjoys
some interesting properties if restricted to the two well-known subclasses of schedulers: partial
information schedulers and distributed schedulers. Under partial information schedulers, late
distribution bisimulation implies trace distribution equivalence, while under distributed schedulers,
compositionality can be derived. Furthermore, if restricted to partial information distributed sched-
ulers, late distribution bisimulation has shown to be the coarsest relation which is compositional
and preserves trace distribution equivalence.

As future work we intend to study reduction barbed congruences [8] under subclasses of
schedulers, in order to pinpoint the characteristics of late distribution bisimilarity. The axiom
system and logical characterization of ≈• would be also interesting. The algorithm in [24] is
exponential in the worst case. We will work out whether or not more efficient algorithms exist.
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