556,862 research outputs found

    What use are formal design and analysis methods to telecommunications services?

    Get PDF
    Have formal methods failed, or will they fail, to help us solve problems of detecting and resolving of feature interactions in telecommunications software? This paper contains SWOT(Strengths, Weaknesses, Opportunities and Threats) analysis of the use of formula design and analysis methods in feature interaction analysis and makes some suggestions for future research

    Is my configuration any good: checking usability in an interactive sensor-based activity monitor

    Get PDF
    We investigate formal analysis of two aspects of usability in a deployed interactive, configurable and context-aware system: an event-driven, sensor-based homecare activity monitor system. The system was not designed from formal requirements or specification: we model the system as it is in the context of an agile development process. Our aim was to determine if formal modelling and analysis can contribute to improving usability, and if so, which style of modelling is most suitable. The purpose of the analysis is to inform configurers about how to interact with the system, so the system is more usable for participants, and to guide future developments. We consider redundancies in configuration rules defined by carers and participants and the interaction modality of the output messages.Two approaches to modelling are considered: a deep embedding in which devices, sensors and rules are represented explicitly by data structures in the modelling language and non-determinism is employed to model all possible device and sensor states, and a shallow embedding in which the rules and device and sensor states are represented directly in propositional logic. The former requires a conventional machine and a model-checker for analysis, whereas the latter is implemented using a SAT solver directly on the activity monitor hardware. We draw conclusions about the role of formal models and reasoning in deployed systems and the need for clear semantics and ontologies for interaction modalities

    UI-Design driven model-based testing

    Get PDF
    Testing interactive systems is notoriously difficult. Not only do we need to ensure that the functionality of the developed system is correct with respect to the requirements and specifications, we also need to ensure that the user interface to the system is correct (enables a user to access the functionality correctly) and is usable. These different requirements of interactive system testing are not easily combined within a single testing strategy. We investigate the use of models of interactive systems, which have been derived from design artefacts, as the basis for generating tests for an implemented system. We give a model-based method for testing interactive systems which has low overhead in terms of the models required and which enables testing of UI and system functionality from the perspective of user interaction

    Refinement for user interface designs

    Get PDF
    Formal approaches to software development require that we correctly describe (or specify) systems in order to prove properties about our proposed solution prior to building it. We must then follow a rigorous process to transform our specification into an implementation to ensure that the properties we have proved are retained. Different transformation, or refinement, methods exist for different formal methods, but they all seek to ensure that we can guide the transformation in a way which preserves the desired properties of the system. Refinement methods also allow us to subsequently compare two systems to see if a refinement relation exists between the two. When we design and build the user interfaces of our systems we are similarly keen to ensure that they have certain properties before we build them. For example, do they satisfy the requirements of the user? Are they designed with known good design principles and usability considerations in mind? Are they correct in terms of the overall system specification? However, when we come to implement our interface designs we do not have a defined process to follow which ensures that we maintain these properties as we transform the design into code. Instead, we rely on our judgement and belief that we are doing the right thing and subsequent user testing to ensure that our final solution remains useable and satisfactory. We suggest an alternative approach, which is to define a refinement process for user interfaces which will allow us to maintain the same rigorous standards we apply to the rest of the system when we implement our user interface designs

    Using formal models to design user interfaces a case study

    Get PDF
    The use of formal models for user interface design can provide a number of benefits. It can help to ensure consistency across designs for multiple platforms, prove properties such as reachability and completeness and, perhaps most importantly, can help incorporate the user interface design process into a larger, formally-based, software development process. Often, descriptions of such models and examples are presented in isolation from real-world practice in order to focus on particular benefits, small focused examples or the general methodology. This paper presents a case study of developing the user interface to a new software application using a particular pair of formal models, presentation models and presentation interaction models. The aim of this study was to practically apply the use of formal models to the design process of a UI for a new software application. We wanted to determine how easy it would be to integrate such models into our usual development process and to find out what the benefits, and difficulties, of using such models were. We will show how we used the formal models within a user-centred design process, discuss what effect they had on this process and explain what benefits we perceived from their use

    What makes industries believe in formal methods

    Get PDF
    The introduction of formal methods in the design and development departments of an industrial company has far reaching and long lasting consequences. In fact it changes the whole environment of methods, tools and skills that determine the design culture of that company. A decision to replace current design practice by formal methods, therefore, appears a vital one and is not lightly taken. The past has shown that efforts to introduce formal methods in industry has faced a lot of controversy and opposition at various hierarchical levels in companies, resulting in a marginal spread of such methods. This paper revisits the requirements for formal description techniques and identifies some critical success and inhibiting factors associated with the introduction of formal methods in the industrial practice. One of the inhibiting factors is the often encountered lack of appropriateness of the formal model to express and manipulate the design concerns that determine the world of the engineer. This factor motivated our research in the area of architectural and implementation design concepts. The last two sections of this paper report on some results of this research

    GTA: Groupware task analysis Modeling complexity

    Get PDF
    The task analysis methods discussed in this presentation stem from Human-Computer Interaction (HCI) and Ethnography (as applied for the design of Computer Supported Cooperative Work CSCW), different disciplines that often are considered conflicting approaches when applied to the same design problems. Both approaches have their strength and weakness, and an integration of them does add value to the early stages of design of cooperation technology. In order to develop an integrated method for groupware task analysis (GTA) a conceptual framework is presented that allows a systematic perspective on complex work phenomena. The framework features a triple focus, considering (a) people, (b) work, and (c) the situation. Integrating various task-modeling approaches requires vehicles for making design information explicit, for which an object oriented formalism will be suggested. GTA consists of a method and framework that have been developed during practical design exercises. Examples from some of these cases will illustrate our approach

    Architecting specifications for test case generation

    Get PDF
    The Specification and Description Language (SDL) together with its associated tool sets can be used for the generation of Tree and Tabular Combined Notation (TTCN) test cases. Surprisingly, little documentation exists on the optimal way to specify systems so that they can best be used for the generation of tests. This paper, elaborates on the different tool supported approaches that can be taken for test case generation and highlights their advantages and disadvantages. A rule based SDL specification style is then presented that facilitates the automatic generation of tests

    Towards formal models and languages for verifiable Multi-Robot Systems

    Get PDF
    Incorrect operations of a Multi-Robot System (MRS) may not only lead to unsatisfactory results, but can also cause economic losses and threats to safety. These threats may not always be apparent, since they may arise as unforeseen consequences of the interactions between elements of the system. This call for tools and techniques that can help in providing guarantees about MRSs behaviour. We think that, whenever possible, these guarantees should be backed up by formal proofs to complement traditional approaches based on testing and simulation. We believe that tailored linguistic support to specify MRSs is a major step towards this goal. In particular, reducing the gap between typical features of an MRS and the level of abstraction of the linguistic primitives would simplify both the specification of these systems and the verification of their properties. In this work, we review different agent-oriented languages and their features; we then consider a selection of case studies of interest and implement them useing the surveyed languages. We also evaluate and compare effectiveness of the proposed solution, considering, in particular, easiness of expressing non-trivial behaviour.Comment: Changed formattin
    • ā€¦
    corecore