17,190 research outputs found

    Walking Through Waypoints

    Full text link
    We initiate the study of a fundamental combinatorial problem: Given a capacitated graph G=(V,E)G=(V,E), find a shortest walk ("route") from a source s∈Vs\in V to a destination t∈Vt\in V that includes all vertices specified by a set W⊆V\mathscr{W}\subseteq V: the \emph{waypoints}. This waypoint routing problem finds immediate applications in the context of modern networked distributed systems. Our main contribution is an exact polynomial-time algorithm for graphs of bounded treewidth. We also show that if the number of waypoints is logarithmically bounded, exact polynomial-time algorithms exist even for general graphs. Our two algorithms provide an almost complete characterization of what can be solved exactly in polynomial-time: we show that more general problems (e.g., on grid graphs of maximum degree 3, with slightly more waypoints) are computationally intractable

    Optimal Trajectory Tracking for an Autonomous UAV

    Get PDF
    The aim of the present project is the design of optimal flight trajectories for an automomous aerial vehicle which is expected to reach the desired locations in the operational environment expressed in terms of planned waypoints. The navigation must be performed with the vehicle's best effort, i.e. with the lowest cost. Hence, we want to minimize the input energy, a function of the inputs for the mathematical model which describes the dynamics of the vehicle. The trajectory must satisfy all the constraints and pass through all the planned waypoints. Assuming the vehicle as a point mass model, the best solution has been investigated through a genetic algorithm search procedure. The optimisation problem has been solved by modifying a micro-genetic algorithm software which was initially developed by D.L. Carroll. Between all the possible trajectories we select the more "realistic" connections among the waypoints. First of all, we have left out the trajectories with discontinuity in the derivatives as these are not feasible by the real aircraft. The polynomial spline is a suitable candidate to solve our problem. The algorithm splits the trajectory in sub-trajectories which join a sequence of three waypoints. Starting from the first three waypoints, the following sub-trajectories are superimposed keeping the first waypoint coincident with the last of the previous sub-trajectory. The sequence of polynomials is initialized assuming that jumps in the direction of flight are avoided pointing the heading angle in the presumed direction of flight. The optimal trajectory is a trade-off amongst three factors: the required energy cost, the minimum distance from the required waypoint and the feasibility of the trajectory. Results obtained with this optimization procedure are presente

    Trajectory Clustering and an Application to Airspace Monitoring

    Get PDF
    This paper presents a framework aimed at monitoring the behavior of aircraft in a given airspace. Nominal trajectories are determined and learned using data driven methods. Standard procedures are used by air traffic controllers (ATC) to guide aircraft, ensure the safety of the airspace, and to maximize the runway occupancy. Even though standard procedures are used by ATC, the control of the aircraft remains with the pilots, leading to a large variability in the flight patterns observed. Two methods to identify typical operations and their variability from recorded radar tracks are presented. This knowledge base is then used to monitor the conformance of current operations against operations previously identified as standard. A tool called AirTrajectoryMiner is presented, aiming at monitoring the instantaneous health of the airspace, in real time. The airspace is "healthy" when all aircraft are flying according to the nominal procedures. A measure of complexity is introduced, measuring the conformance of current flight to nominal flight patterns. When an aircraft does not conform, the complexity increases as more attention from ATC is required to ensure a safe separation between aircraft.Comment: 15 pages, 20 figure

    A concept for a fuel efficient flight planning aid for general aviation

    Get PDF
    A core equation for estimation of fuel burn from path profile data was developed. This equation was used as a necessary ingredient in a dynamic program to define a fuel efficient flight path. The resultant algorithm is oriented toward use by general aviation. The pilot provides a description of the desired ground track, standard aircraft parameters, and weather at selected waypoints. The algorithm then derives the fuel efficient altitudes and velocities at the waypoints

    A global optimization approach to solve multi-aircraft routing problems

    Get PDF
    "This chapter appears in Computational Models, Software Engineering and Advanced Technologies in Air Transportation edited by Dr. Li Weigang and Dr. Alexandre G. de Barros. Chap.12 pp.237-259. Copyright 2009. Posted by permission of the publisher."This paper describes the formulation and solution of a multi-aircraft routing problem which is posed as a global optimization calculation. The paper extends previous work (involving a single aircraft using two dimensions) which established that the algorithm DIRECT is a suitable solution technique. The present work considers a number of ways of dealing with multiple routes using different problem decompositions. A further enhancement is the introduction of altitude to the problems so that full three-dimensional routes can be produced. Illustrative numerical results are presented involving up to three aircraft and including examples which feature routes over real-life terrain data
    • 

    corecore