5 research outputs found

    Multi-Scale Edge Detection Algorithms and Their Information-Theoretic Analysis in the Context of Visual Communication

    Get PDF
    The unrealistic assumption that noise can be modeled as independent, additive and uniform can lead to problems when edge detection methods are applied to low signal-to-noise ratio (SNR) images. The main reason for this is because the filter scale and the threshold for the gradient are difficult to determine at a regional or local scale when the noise estimate is on a global scale. Therefore, in this dissertation, we attempt to solve these problems by using more than one filter to detect the edges and discarding the global thresholding method in the edge discrimination. The proposed multi-scale edge detection algorithms utilize the multi-scale description to detect and localize edges. Furthermore, instead of using the single default global threshold, a local dynamic threshold is introduced to discriminate between edges and non-edges. The proposed algorithms also perform connectivity analysis on edge maps to ensure that small, disconnected edges are removed. Experiments where the methods are applied to a sequence of images of the same scene with different SNRs show the methods to be robust to noise. Additionally, a new noise reduction algorithm based on the multi-scale edge analysis is proposed. In general, an edge—high frequency information in an image—would be filtered or suppressed after image smoothing. With the help of multi-scale edge detection algorithms, the overall edge structure of the original image could be preserved when only the isolated edge information that represents noise gets filtered out. Experimental results show that this method is robust to high levels of noise, correctly preserving the edges. We also propose a new method for evaluating the performance of edge detection algorithms. It is based on information-theoretic analysis of the edge detection algorithms in the context of an end-to-end visual communication channel. We use the information between the scene and the output of the edge-detection algorithm, ala Shannon, to evaluate the performance. An edge detection algorithm is considered to have high performance only if the information rate from the scene to the edge approaches the maximum possible. Therefore, this information-theoretic analysis becomes a new method to allow comparison between different edge detection operators for a given end-to-end image processing system

    Visual Quality Assessment and Blur Detection Based on the Transform of Gradient Magnitudes

    Get PDF
    abstract: Digital imaging and image processing technologies have revolutionized the way in which we capture, store, receive, view, utilize, and share images. In image-based applications, through different processing stages (e.g., acquisition, compression, and transmission), images are subjected to different types of distortions which degrade their visual quality. Image Quality Assessment (IQA) attempts to use computational models to automatically evaluate and estimate the image quality in accordance with subjective evaluations. Moreover, with the fast development of computer vision techniques, it is important in practice to extract and understand the information contained in blurred images or regions. The work in this dissertation focuses on reduced-reference visual quality assessment of images and textures, as well as perceptual-based spatially-varying blur detection. A training-free low-cost Reduced-Reference IQA (RRIQA) method is proposed. The proposed method requires a very small number of reduced-reference (RR) features. Extensive experiments performed on different benchmark databases demonstrate that the proposed RRIQA method, delivers highly competitive performance as compared with the state-of-the-art RRIQA models for both natural and texture images. In the context of texture, the effect of texture granularity on the quality of synthesized textures is studied. Moreover, two RR objective visual quality assessment methods that quantify the perceived quality of synthesized textures are proposed. Performance evaluations on two synthesized texture databases demonstrate that the proposed RR metrics outperforms full-reference (FR), no-reference (NR), and RR state-of-the-art quality metrics in predicting the perceived visual quality of the synthesized textures. Last but not least, an effective approach to address the spatially-varying blur detection problem from a single image without requiring any knowledge about the blur type, level, or camera settings is proposed. The evaluations of the proposed approach on a diverse sets of blurry images with different blur types, levels, and content demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods qualitatively and quantitatively.Dissertation/ThesisDoctoral Dissertation Electrical Engineering 201

    Texture Structure Analysis

    Get PDF
    abstract: Texture analysis plays an important role in applications like automated pattern inspection, image and video compression, content-based image retrieval, remote-sensing, medical imaging and document processing, to name a few. Texture Structure Analysis is the process of studying the structure present in the textures. This structure can be expressed in terms of perceived regularity. Our human visual system (HVS) uses the perceived regularity as one of the important pre-attentive cues in low-level image understanding. Similar to the HVS, image processing and computer vision systems can make fast and efficient decisions if they can quantify this regularity automatically. In this work, the problem of quantifying the degree of perceived regularity when looking at an arbitrary texture is introduced and addressed. One key contribution of this work is in proposing an objective no-reference perceptual texture regularity metric based on visual saliency. Other key contributions include an adaptive texture synthesis method based on texture regularity, and a low-complexity reduced-reference visual quality metric for assessing the quality of synthesized textures. In order to use the best performing visual attention model on textures, the performance of the most popular visual attention models to predict the visual saliency on textures is evaluated. Since there is no publicly available database with ground-truth saliency maps on images with exclusive texture content, a new eye-tracking database is systematically built. Using the Visual Saliency Map (VSM) generated by the best visual attention model, the proposed texture regularity metric is computed. The proposed metric is based on the observation that VSM characteristics differ between textures of differing regularity. The proposed texture regularity metric is based on two texture regularity scores, namely a textural similarity score and a spatial distribution score. In order to evaluate the performance of the proposed regularity metric, a texture regularity database called RegTEX, is built as a part of this work. It is shown through subjective testing that the proposed metric has a strong correlation with the Mean Opinion Score (MOS) for the perceived regularity of textures. The proposed method is also shown to be robust to geometric and photometric transformations and outperforms some of the popular texture regularity metrics in predicting the perceived regularity. The impact of the proposed metric to improve the performance of many image-processing applications is also presented. The influence of the perceived texture regularity on the perceptual quality of synthesized textures is demonstrated through building a synthesized textures database named SynTEX. It is shown through subjective testing that textures with different degrees of perceived regularities exhibit different degrees of vulnerability to artifacts resulting from different texture synthesis approaches. This work also proposes an algorithm for adaptively selecting the appropriate texture synthesis method based on the perceived regularity of the original texture. A reduced-reference texture quality metric for texture synthesis is also proposed as part of this work. The metric is based on the change in perceived regularity and the change in perceived granularity between the original and the synthesized textures. The perceived granularity is quantified through a new granularity metric that is proposed in this work. It is shown through subjective testing that the proposed quality metric, using just 2 parameters, has a strong correlation with the MOS for the fidelity of synthesized textures and outperforms the state-of-the-art full-reference quality metrics on 3 different texture databases. Finally, the ability of the proposed regularity metric in predicting the perceived degradation of textures due to compression and blur artifacts is also established.Dissertation/ThesisPh.D. Electrical Engineering 201

    Rate-distortion optimized geometrical image processing

    Get PDF
    Since geometrical features, like edges, represent one of the most important perceptual information in an image, efficient exploitation of such geometrical information is a key ingredient of many image processing tasks, including compression, denoising and feature extraction. Therefore, the challenge for the image processing community is to design efficient geometrical schemes which can capture the intrinsic geometrical structure of natural images. This thesis focuses on developing computationally efficient tree based algorithms for attaining the optimal rate-distortion (R-D) behavior for certain simple classes of geometrical images, such as piecewise polynomial images with polynomial boundaries. A good approximation of this class allows to develop good approximation and compression schemes for images with strong geometrical features, and as experimental results show, also for real life images. We first investigate both the one dimensional (1-D) and two dimensional (2-D) piecewise polynomials signals. For the 1-D case, our scheme is based on binary tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly and is called prune-join algorithm. This allows to achieve the correct exponentially decaying R-D behavior, D(R) ~ 2-cR, thus improving over classical wavelet schemes. We also show that the computational complexity of the scheme is of O(N logN). We then extend this scheme to the 2-D case using a quadtree, which also achieves an exponentially decaying R-D behavior, for the piecewise polynomial image model, with a low computational cost of O(N logN). Again, the key is an R-D optimized prune and join strategy. We further analyze the R-D performance of the proposed tree algorithms for piecewise smooth signals. We show that the proposed algorithms achieve the oracle like polynomially decaying asymptotic R-D behavior for both the 1-D and 2-D scenarios. Theoretical as well as numerical results show that the proposed schemes outperform wavelet based coders in the 2-D case. We then consider two interesting image processing problems, namely denoising and stereo image compression, in the framework of the tree structured segmentation. For the denoising problem, we present a tree based algorithm which performs denoising by compressing the noisy image and achieves improved visual quality by capturing geometrical features, like edges, of images more precisely compared to wavelet based schemes. We then develop a novel rate-distortion optimized disparity based coding scheme for stereo images. The main novelty of the proposed algorithm is that it performs the joint coding of disparity information and the residual image to achieve better R-D performance in comparison to standard block based stereo image coder

    Image quality assessment : utility, beauty, appearance

    Get PDF
    corecore