458 research outputs found

    Wavelet Trees Meet Suffix Trees

    Full text link
    We present an improved wavelet tree construction algorithm and discuss its applications to a number of rank/select problems for integer keys and strings. Given a string of length n over an alphabet of size σn\sigma\leq n, our method builds the wavelet tree in O(nlogσ/logn)O(n \log \sigma/ \sqrt{\log{n}}) time, improving upon the state-of-the-art algorithm by a factor of logn\sqrt{\log n}. As a consequence, given an array of n integers we can construct in O(nlogn)O(n \sqrt{\log n}) time a data structure consisting of O(n)O(n) machine words and capable of answering rank/select queries for the subranges of the array in O(logn/loglogn)O(\log n / \log \log n) time. This is a loglogn\log \log n-factor improvement in query time compared to Chan and P\u{a}tra\c{s}cu and a logn\sqrt{\log n}-factor improvement in construction time compared to Brodal et al. Next, we switch to stringological context and propose a novel notion of wavelet suffix trees. For a string w of length n, this data structure occupies O(n)O(n) words, takes O(nlogn)O(n \sqrt{\log n}) time to construct, and simultaneously captures the combinatorial structure of substrings of w while enabling efficient top-down traversal and binary search. In particular, with a wavelet suffix tree we are able to answer in O(logx)O(\log |x|) time the following two natural analogues of rank/select queries for suffixes of substrings: for substrings x and y of w count the number of suffixes of x that are lexicographically smaller than y, and for a substring x of w and an integer k, find the k-th lexicographically smallest suffix of x. We further show that wavelet suffix trees allow to compute a run-length-encoded Burrows-Wheeler transform of a substring x of w in O(slogx)O(s \log |x|) time, where s denotes the length of the resulting run-length encoding. This answers a question by Cormode and Muthukrishnan, who considered an analogous problem for Lempel-Ziv compression.Comment: 33 pages, 5 figures; preliminary version published at SODA 201

    Wavelet Trees Meet Suffix Trees

    No full text
    We present an improved wavelet tree construction algorithm and discuss its applications to a number of rank/select problems for integer keys and strings. Given a string of length n over an alphabet of size σn\sigma\leq n, our method builds the wavelet tree in O(nlogσ/logn)O(n \log \sigma/ \sqrt{\log{n}}) time, improving upon the state-of-the-art algorithm by a factor of logn\sqrt{\log n}. As a consequence, given an array of n integers we can construct in O(nlogn)O(n \sqrt{\log n}) time a data structure consisting of O(n)O(n) machine words and capable of answering rank/select queries for the subranges of the array in O(logn/loglogn)O(\log n / \log \log n) time. This is a loglogn\log \log n-factor improvement in query time compared to Chan and P\u{a}tra\c{s}cu and a logn\sqrt{\log n}-factor improvement in construction time compared to Brodal et al. Next, we switch to stringological context and propose a novel notion of wavelet suffix trees. For a string w of length n, this data structure occupies O(n)O(n) words, takes O(nlogn)O(n \sqrt{\log n}) time to construct, and simultaneously captures the combinatorial structure of substrings of w while enabling efficient top-down traversal and binary search. In particular, with a wavelet suffix tree we are able to answer in O(logx)O(\log |x|) time the following two natural analogues of rank/select queries for suffixes of substrings: for substrings x and y of w count the number of suffixes of x that are lexicographically smaller than y, and for a substring x of w and an integer k, find the k-th lexicographically smallest suffix of x. We further show that wavelet suffix trees allow to compute a run-length-encoded Burrows-Wheeler transform of a substring x of w in O(slogx)O(s \log |x|) time, where s denotes the length of the resulting run-length encoding. This answers a question by Cormode and Muthukrishnan, who considered an analogous problem for Lempel-Ziv compression

    String Synchronizing Sets: Sublinear-Time BWT Construction and Optimal LCE Data Structure

    Full text link
    Burrows-Wheeler transform (BWT) is an invertible text transformation that, given a text TT of length nn, permutes its symbols according to the lexicographic order of suffixes of TT. BWT is one of the most heavily studied algorithms in data compression with numerous applications in indexing, sequence analysis, and bioinformatics. Its construction is a bottleneck in many scenarios, and settling the complexity of this task is one of the most important unsolved problems in sequence analysis that has remained open for 25 years. Given a binary string of length nn, occupying O(n/logn)O(n/\log n) machine words, the BWT construction algorithm due to Hon et al. (SIAM J. Comput., 2009) runs in O(n)O(n) time and O(n/logn)O(n/\log n) space. Recent advancements (Belazzougui, STOC 2014, and Munro et al., SODA 2017) focus on removing the alphabet-size dependency in the time complexity, but they still require Ω(n)\Omega(n) time. In this paper, we propose the first algorithm that breaks the O(n)O(n)-time barrier for BWT construction. Given a binary string of length nn, our procedure builds the Burrows-Wheeler transform in O(n/logn)O(n/\sqrt{\log n}) time and O(n/logn)O(n/\log n) space. We complement this result with a conditional lower bound proving that any further progress in the time complexity of BWT construction would yield faster algorithms for the very well studied problem of counting inversions: it would improve the state-of-the-art O(mlogm)O(m\sqrt{\log m})-time solution by Chan and P\v{a}tra\c{s}cu (SODA 2010). Our algorithm is based on a novel concept of string synchronizing sets, which is of independent interest. As one of the applications, we show that this technique lets us design a data structure of the optimal size O(n/logn)O(n/\log n) that answers Longest Common Extension queries (LCE queries) in O(1)O(1) time and, furthermore, can be deterministically constructed in the optimal O(n/logn)O(n/\log n) time.Comment: Full version of a paper accepted to STOC 201

    Parallel Wavelet Tree Construction

    Full text link
    We present parallel algorithms for wavelet tree construction with polylogarithmic depth, improving upon the linear depth of the recent parallel algorithms by Fuentes-Sepulveda et al. We experimentally show on a 40-core machine with two-way hyper-threading that we outperform the existing parallel algorithms by 1.3--5.6x and achieve up to 27x speedup over the sequential algorithm on a variety of real-world and artificial inputs. Our algorithms show good scalability with increasing thread count, input size and alphabet size. We also discuss extensions to variants of the standard wavelet tree.Comment: This is a longer version of the paper that appears in the Proceedings of the IEEE Data Compression Conference, 201

    Regular Languages meet Prefix Sorting

    Full text link
    Indexing strings via prefix (or suffix) sorting is, arguably, one of the most successful algorithmic techniques developed in the last decades. Can indexing be extended to languages? The main contribution of this paper is to initiate the study of the sub-class of regular languages accepted by an automaton whose states can be prefix-sorted. Starting from the recent notion of Wheeler graph [Gagie et al., TCS 2017]-which extends naturally the concept of prefix sorting to labeled graphs-we investigate the properties of Wheeler languages, that is, regular languages admitting an accepting Wheeler finite automaton. Interestingly, we characterize this family as the natural extension of regular languages endowed with the co-lexicographic ordering: when sorted, the strings belonging to a Wheeler language are partitioned into a finite number of co-lexicographic intervals, each formed by elements from a single Myhill-Nerode equivalence class. Moreover: (i) We show that every Wheeler NFA (WNFA) with nn states admits an equivalent Wheeler DFA (WDFA) with at most 2n1Σ2n-1-|\Sigma| states that can be computed in O(n3)O(n^3) time. This is in sharp contrast with general NFAs. (ii) We describe a quadratic algorithm to prefix-sort a proper superset of the WDFAs, a O(nlogn)O(n\log n)-time online algorithm to sort acyclic WDFAs, and an optimal linear-time offline algorithm to sort general WDFAs. By contribution (i), our algorithms can also be used to index any WNFA at the moderate price of doubling the automaton's size. (iii) We provide a minimization theorem that characterizes the smallest WDFA recognizing the same language of any input WDFA. The corresponding constructive algorithm runs in optimal linear time in the acyclic case, and in O(nlogn)O(n\log n) time in the general case. (iv) We show how to compute the smallest WDFA equivalent to any acyclic DFA in nearly-optimal time.Comment: added minimization theorems; uploaded submitted version; New version with new results (W-MH theorem, linear determinization), added author: Giovanna D'Agostin

    Engineering Fully-Compressed Suffix Trees

    Get PDF

    Parallel text index construction

    Get PDF
    In dieser Dissertation betrachten wir die parallele Konstruktion von Text-Indizes. Text-Indizes stellen Zusatzinformationen über Texte bereit, die Anfragen hinsichtlich dieser Texte beschleunigen können. Ein Beispiel hierfür sind Volltext-Indizes, welche für eine effiziente Phrasensuche genutzt werden, also etwa für die Frage, ob eine Phrase in einem Text vorkommt oder nicht. Diese Dissertation befasst sich hauptsächlich, aber nicht ausschließlich mit der parallelen Konstruktion von Text-Indizes im geteilten und verteilten Speicher. Im ersten Teil der Dissertation betrachten wir Wavelet-Trees. Dabei handelt es sich um kompakte Indizes, welche Rank- und Select-Anfragen von binären Alphabeten auf Alphabete beliebiger Größe verallgemeinern. Im zweiten Teil der Dissertation betrachten wir das Suffix-Array, den am besten erforschten Text-Index überhaupt. Das Suffix-Array enthält die Startpositionen aller lexikografisch sortierten Suffixe eines Textes, d.h., wir möchten alle Suffixe eines Textes sortieren. Oft wird das Suffix-Array um das Longest-Common-Prefix-Array (LCP-Array) erweitert. Das LCP-Array enthält die Länge der längsten gemeinsamen Präfixe zweier lexikografisch konsekutiven Suffixe. Abschließend nutzen wir verteilte Suffix- und LCP-Arrays, um den Distributed-Patricia-Trie zu konstruieren. Dieser erlaubt es uns, verschiedene Phrase-Anfragen effizienter zu beantworten, als wenn wir nur das Suffix-Array nutzen.The focus of this dissertation is the parallel construction of text indices. Text indices provide additional information about a text that allow to answer queries faster. Full-text indices for example are used to efficiently answer phrase queries, i.e., if and where a phrase occurs in a text. The research in this dissertation is focused on but not limited to parallel construction algorithms for text indices in both shared and distributed memory. In the first part, we look at wavelet trees: a compact index that generalizes rank and select queries from binary alphabets to alphabets of arbitrary size. In the second part of this dissertation, we consider the suffix array---one of the most researched text indices.The suffix array of a text contains the starting positions of the text's lexicographically sorted suffixes, i.e., we want to sort all its suffixes. Finally, we use the distributed suffix arrays (and LCP arrays) to compute distributed Patricia tries. This allows us to answer different phrase queries more efficiently than using only the suffix array

    Internal Pattern Matching Queries in a Text and Applications

    Full text link
    We consider several types of internal queries: questions about subwords of a text. As the main tool we develop an optimal data structure for the problem called here internal pattern matching. This data structure provides constant-time answers to queries about occurrences of one subword xx in another subword yy of a given text, assuming that y=O(x)|y|=\mathcal{O}(|x|), which allows for a constant-space representation of all occurrences. This problem can be viewed as a natural extension of the well-studied pattern matching problem. The data structure has linear size and admits a linear-time construction algorithm. Using the solution to the internal pattern matching problem, we obtain very efficient data structures answering queries about: primitivity of subwords, periods of subwords, general substring compression, and cyclic equivalence of two subwords. All these results improve upon the best previously known counterparts. The linear construction time of our data structure also allows to improve the algorithm for finding δ\delta-subrepetitions in a text (a more general version of maximal repetitions, also called runs). For any fixed δ\delta we obtain the first linear-time algorithm, which matches the linear time complexity of the algorithm computing runs. Our data structure has already been used as a part of the efficient solutions for subword suffix rank & selection, as well as substring compression using Burrows-Wheeler transform composed with run-length encoding.Comment: 31 pages, 9 figures; accepted to SODA 201
    corecore