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Zusammenfassung
Der Suffixbaum ist eine klassische Datenstruktur, die optimale Lösungen

für zahlreiche Probleme aus dem Bereich der Stringverarbeitung ermöglicht.
Eine zeigerbasierte Repräsentation des Suffixbaums benötigt für einen Text
der Länge n einen Speicheraufwand von Θ(n log n) Bit, wohingegen kompakte
Repräsentationen O(n) Bit zusätzlich zum Speicherbedarf des komprimierten
Textes benötigen. Der Fully-Compressed Suffix Tree (FCST) bietet diesel-
be Funktionalität und benötigt o(n) Bit zusätzlich zum Speicherbedarf des
komprimierten Textes, wohingegen die Abfragezeit um einen logarithmischen
Faktor langsamer ist als bei kompakten Repräsentationen.
Im Rahmen dieser Arbeit wird eine generische Implementierung des FCST

angefertigt, einschließlich einer kürzlich veröffentlichten Variante von Navarro
und Russo, welche ein abweichendes Sampling verwendet, um eine bessere
Zeitkomplexität zu erreichen. Es wird eine Variante des FCST vorgestellt, die
einen auf blind search basierenden Ansatz verwendet, um String-Matching
sowohl theoretisch als auch praktisch zu verbessern.
Es wird eine ausführliche empirische Evaluation und ein Vergleich der im-

plementierten Datenstrukturen durchgeführt und gezeigt, dass die Implemen-
tierung dem vorherigen Prototypen in Platzbedarf sowie Abfrage- und Kon-
struktionszeit überlegen ist.

Abstract
The suffix tree is a classical data structure that provides optimal solutions

to countless string processing problems. For a text of length n, a pointer-
based representation of a suffix tree requires Θ(n log n) bits, whereas compact
representations use O(n) bits on top of the size of the compressed text. The
fully-compressed suffix tree (FCST) provides the same functionality using o(n)
bits on top of the size of the compressed text, whereas queries are slowed down
by a logarithmic factor compared to compact representations.
Our contribution is a generic implementation of the FCST, including a re-

cent proposal by Navarro and Russo that uses a different sampling to achieve
a better query time complexity. We propose a variant of the FCST that im-
proves pattern matching both in theory and in practice using a blind search
approach.
We provide an extensive empirical evaluation and comparison of the imple-

mented data structures and show that our implementation outperforms the
previous prototype in both space consumption and query/construction time.
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1 Introduction

1 Introduction

1.1 Motivation

String matching is the problem of finding the occurrences of a small string, called the
pattern, in a longer string, the text. Online string matching algorithms read the text
sequentially and compare it with the pattern to find its occurrences. Although there are
techniques like the Boyer-Moore [1] or the Knuth-Morris-Pratt algorithm [2] for speeding
up this process compared to a naive solution, online string matching inherently requires
time proportional to the size of the input to solve this problem.

If many patterns are to be found in the same text, it is beneficial to separate the process
into two phases. In the first phase, the indexing phase, the text is preprocessed and an
auxiliary data structure, called the index, is built. In the second phase, the querying
phase, the index is used to solve the string matching problem. While the indexing phase
may be time-consuming and still requires at least linear time, queries are generally much
faster, both asymptotically and in practice.

The suffix tree is a classical data structure that can be used as an index to perform
string matching. In his textbook, Gusfield [3] presents more than 20 applications which
can be solved efficiently by using suffix trees. One essential aspect of suffix trees is that
they can be constructed in linear time [4], so that indexed string matching can be applied
without increasing the asymptotic complexity of the algorithm, allowing optimal solutions
to many problems. For example, the problem of finding the longest common substring of
two strings can be solved in linear time using suffix trees.

Suffix trees are commonly used in bioinformatics to match sequences of DNA or proteins,
where natural borders are absent and character-based pattern matching, as the suffix tree
provides it, is required. The problem with classical pointer-based suffix tree representa-
tions is that they are very large. Using a space-efficient implementation, the suffix tree of
the human genome requires 45 GB of main memory [5], which is a lot more than the 700
MB the human genome itself occupies1. For practical purposes it is often resorted to the
suffix array, a data structure that provides only part of the functionality of the suffix tree
but requires less space in classical representations. The suffix array of the human genome
requires about 11 GB of main memory2. Abouelhoda et al. [6] show how the suffix array
can be extended by a longest common prefix array and a child table to provide the same
functionality and time complexity as the suffix tree using three times the space of the
suffix array.

A general problem of classical representations of both the suffix tree and the suffix array
is their asymptotic space complexity of Θ(n log n) bits, where n is the length of the text.
Its space requirement is thus growing faster than the size of the plain text, which is
O(n log σ) bits, where σ is the number of different characters in the text. The large space
requirements make suffix trees and suffix arrays impractical for large texts.

1The human genome consists of a slightly more than 3 billion base pairs. As there are four different
base pairs, each one can be represented using 2 bits. Storing the genome as a sequence thus requires
about 6 billion bits or 700 MB.

2The suffix array of the human genome consists of n ≈ 3 · 109 integer values with values in the interval
[0, n) so that each entry can be stored using dlogne = 32 bits. In total, the n entries require ndlogne ≈
11 · 230 = 11GB.

1



1 Introduction

In 2000, the first succinct indexes appeared. A succinct index is a data structure that
provides efficient string matching capability and requires only space close to the size of the
compressed text. One such index is the compressed suffix array by Grossi and Vitter [7]
that exploits the structure of the suffix array to achieve a succinct representation, while
still providing efficient access to its elements. Another succinct index is the FM-index by
Ferragina and Manzini [8] which has the benefit of inherently being a self-index, i.e. it
allows efficient reconstruction of the text or parts of it.

Sadakane introduced a compressed suffix tree [9] representation that enhances a com-
pressed suffix array using auxiliary data structures with a space complexity of Θ(n) to
efficiently support the full functionality of the suffix tree. Although much smaller than
classical representations, the space required by the compressed suffix tree still depends
linearly on the input size. This linear term is especially bad if the text is very repetitive,
so that the compressed text is much smaller than the uncompressed text. For example,
this is the case when indexing different versions of a file in a version control system.

The Θ(n) space barrier was first broken by the fully-compressed suffix tree proposed by
Russo et al. [10], which supports full suffix tree functionality using only o(n) bits on top of
the size of the compressed suffix array, although this is bought with a significant slowdown
compared to the compressed suffix tree by Sadakane. The fully-compressed suffix tree has
been implemented by the authors of the original paper [11], although their implementation
differs from the theoretical proposal. For example, their tree representation is not succinct.

Using our implementation, different versions of a Wikipedia article3 amounting to a size
of 446 MB of plain text can be represented by a fully-compressed suffix tree with a space
consumption of 70 MB, whereas a compressed suffix tree of the same text (using the same
underlying compressed suffix array4) requires 474 MB.

1.2 Contributions

We make several contributions in this thesis: We provide a generic implementation of the
fully-compressed suffix tree (FCST) proposed by Russo et al. [11]. The implementation
is based on the Succinct Data Structure Library (SDSL) [12] and can be parametrized
with SDSL data structures. We implement a recent variant of the FCST proposed by
Navarro and Russo [13] which uses a different sampling strategy to achieve a lower space
complexity. One drawback of the above FCST is that pattern matching is relatively slow
in theory and practice. We try to solve this problem by introducing a binary FCST
variant, called BFCST, that uses a blind search approach for pattern matching.

In an extensive empirical evaluation we explore different time-space trade-offs of each
FCST variant and compare the three variants. We show that our FCST implementa-
tion outperforms the prototype implementation provided by Russo et al. in both space
consumption as well as query and construction time.

3The file contains all versions of the article Albert Einstein in the English Wikipedia up until November
10, 2006. It can be found in the repetitive corpus of Pizza&Chili at http://pizzachili.dcc.uchile.
cl/repcorpus.html.

4The compressed suffix array that is used is an instantiation of the FM-index from the Succinct
Data Structure Library that is given by the type csa_wt<wt_huff<rrr_vector<255> >, 64, 64,
text_order_sa_sampling<>, text_order_isa_sampling_support<> >.
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1.3 Structure of this Document

1.3 Structure of this Document

Section 2 gives an overview of basic data structures required for the understanding and im-
plementation of the fully-compressed suffix tree. Section 3 introduces the fully-compressed
suffix tree, a variant with a different sampling proposed by Navarro and Russo and a third
variant that provides improved pattern matching using a binary tree structure. Section 4
shows experimental results and comparisons of the implemented data structures. Section
5 gives a summary of the results as well as open problems in the context of the thesis.

2 Theoretical Foundation

In this section we lay the theoretical foundation of the data structures that play a role in
the implementation of the fully-compressed suffix tree.

2.1 Notation

A string S is a sequence of characters with length |S| = n. Each character is an element
of a totally ordered finite set called the alphabet Σ with size |Σ| = σ. We denote by S[i]
the character at position i (starting at position 0) and by S[i..j] the substring S[i], S[i+
1] . . . S[j]. A prefix is a substring of the form S[0..j], while a suffix is a substring of the
form S[i..n − 1]. The concatenation of a string S and a character α is denoted by S.α
and obtained by appending α at the end of S. The concatenation S.S ′ of two strings S
and S ′ is obtained by subsequently appending each character of S ′ to the end of S. The
empty string is denoted by ε and has length |ε| = 0.

When indexing, we will generally have a large string T that is called the text and a
(usually) smaller string P , the pattern. We always assume that the text has a unique
terminal character $ that is smaller than any other character in the alphabet and does
not appear anywhere else in the text. In the context of string matching, two subproblems
are particularly interesting: The first one is count, calculating the number of occurrences
of the pattern P in the text T . The second one is locate, finding all such occurrences, i.e.
determining their position in the text.

2.2 Suffix Trees and Basic Definitions

We start by defining a simple data structure for storing a set of strings, the trie.

Definition 1. A trie of a set of strings S = {S1, S2 . . . Sn} is a rooted labeled tree, where
each node represents a prefix of a string S ∈ S. A node v representing string S has a
child u representing S ′ iff S ′ = S.α for a character α ∈ Σ. The edge between u and v is
labeled α. The root represents the empty string ε.

Figure 1 shows an example of a trie.

We will call the string that is represented by a node v of a labeled tree its path label, as
it is the concatenation of all the edge labels on the path from the root to v. Note that a

3



2 Theoretical Foundation

t
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Figure 1: The trie of the strings ’trick$’, ’trie$’ and ’try$’. Inner nodes are represented
by rectangles with rounded corners, while leaves are represented by rectangles
without rounded corners.

node is uniquely determined by its path label. Therefore, we will refer to the node v and
its path label indifferently when the meaning is clear from context.

Assuming that every string in the trie is terminated by the sentinel character $, which
occurs nowhere else in the string, no string in the trie is a prefix of another and every
string Si is represented by a leaf in the trie. To check whether a string S is contained in
the trie, we traverse the edges of the trie according to the characters in S and check if we
arrive at a leaf.

Definition 2. The suffix trie of a text T is the trie of all suffixes of T .

$ a

n

a

n

a

s

$

s

$

s

$

n

a

n

a

s

$

s

$

s

$

Figure 2: The suffix trie of the string ’ananas$’.

Figure 2 shows an example of a suffix trie.

The suffix trie can be used as an index of the text T to find out whether a pattern P of
length |P | = m is a substring of T . Since any substring in T is a prefix of a suffix of T ,
P has a representing node v in the suffix trie iff P is a substring of T .

By storing the children of each node in a lookup table, we can navigate to a child of a
node in constant time. To find a node v representing pattern P in the trie, we traverse
the tree according to the characters in P until we arrive at the node v after m steps. To
count the number of occurrences of P in T , we count the number of leaves in the subtree
rooted at node v, each of which represents such an occurrence.
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2.2 Suffix Trees and Basic Definitions

The drawback of the suffix trie is that it has up to n(n+1)
2 + 1 = O(n2) nodes. Assuming

each node only takes up as much space as its label, the suffix trie can be stored using
O(n2 log σ) bits.

Definition 3. The compact trie of a trie is obtained by removing each path without
branching in the original trie and replacing it with a single edge labeled with the concate-
nation of the labels of the original edges.

The compact trie is also known as the Patricia-Trie in literature.

Definition 4. The suffix tree of a text T is the compact trie of all suffixes of T .

Figure 3 shows an example of a suffix tree.

v0
$

v1
a

v2

n

a

n

a

s

$

s

$

s

$
v3

n

a

n

a

s

$

s

$

s

$

Figure 3: The suffix tree of the string ’ananas$’. This is the compact version of the trie
shown in Figure 2.

In a suffix tree, the children of a node v are distinguished by the first character of their edge
labels, which we will call the branching letter of node v. For brevity, we will sometimes
refer to the child u of v identified by the branching letter α ∈ Σ as v.α = u, although the
path label of u may be longer.

Since there are n leaves in the suffix tree and every inner node has at least two children,
there are at most n− 1 inner nodes in the suffix tree. The total number of nodes of the
suffix tree is thus O(n). Although the number of nodes is reduced when compared to the
suffix trie, the number of characters in the labels remains the same. So instead of storing
the edge labels explicitly, they are represented by a pointer to the text and the length of
the label. In this representation, the suffix tree takes O(n log n) bits of space.

Note that in contrast to the suffix trie, the suffix tree does not contain a node for every
substring of T . For example, in the suffix tree in Figure 3 the string ’an’ is not represented
by a node but by a point on the edge between the nodes representing ’a’ and ’ana’. Taking
into consideration this difference, string matching is performed in a similar fashion to
matching in the suffix trie.

In addition to string matching, there are a number of other operations that can be per-
formed on suffix trees. One such operation is the suffix link.

Definition 5. The suffix link of a node v 6= root, denoted by slink(v), is the node u so
that v = α.u for a character α ∈ Σ.

5



2 Theoretical Foundation

The suffix link of a node v is obtained by removing the first character from the path label
of v. Notice that such a node always exists for any node in the suffix tree, except for the
root. For example, in Figure 3, slink(v2) = v3, as the path label of v2 is ’ana’, while the
path label of v3 is ’na’.

The suffix link plays an important role in the construction of the suffix tree [14] and can
be stored for each node without increasing the space complexity of the suffix tree.

Another interesting operation is the lowest common ancestor of two nodes v and w,
denoted by LCA(v, w). This is equivalent to finding the longest common prefix of two
strings represented by nodes in the suffix tree. The lowest common ancestor problem can
be solved in constant time using O(n) bits [15].

2.3 Suffix Arrays

We will now introduce the suffix array, an index that provides part of the functionality of
suffix trees and is particularly easy to implement.

Definition 6. The suffix array of a text T of size n is an array SA of size n so that
T [SA[i]..n− 1] < T [SA[i+ 1]..n− 1] for 0 ≤ i < n− 1 where < is the lexicographic order
on strings.

T [6..6] = $
T [0..6] = ananas$
T [2..6] = anas$
T [4..6] = as$
T [1..6] = nanas$
T [3..6] = nas$
T [5..6] = s$

i = 0 1 2 3 4 5 6
SA[i] = 6 0 2 4 1 3 5

Figure 4: The suffixes of T = ’ananas$’ sorted lexicographically (top) and the suffix array
of the string ’ananas$’ (bottom).

In other words, the suffix array contains the starting positions of the suffixes of T sorted
in lexicographic order. Figure 4 shows an example of a suffix array. The suffix array
corresponds to the leaves of the suffix tree. Assuming we visit the children of each suffix
tree node in the order of their branching letter, we obtain the suffix array by traversing
the tree and writing down the starting positions of the suffixes represented by the leaves.

Since the suffixes are sorted, all suffixes with the same prefix are at consecutive positions
in the suffix array. That means that suffix tree nodes, which themselves represent suffixes
that share a common prefix, correspond to an interval in the suffix array. For example,
node v1 in the suffix tree in Figure 3 corresponds to the interval [1, 3] in the suffix array
in Figure 4. However, the tree structure is not represented in the suffix array, so that
efficient navigation is not possible.

In combination with the text, the suffix array can be used to solve the string match-
ing problem by performing a binary search. The time complexity for a count query is
O(m log n) for a pattern of length m. The suffix array can be stored in ndlog ne =
O(n log n) bits.
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2.4 Bit Vectors

2.4 Bit Vectors

A basic building block of all succinct data structures we will present in this thesis are
bit vectors (or binary sequences). In addition to efficient access to the value of a single
element, we are interested in the following two operations:

For a bit vector B of length |B| = n, a ∈ {0, 1}, i ∈ [0, n] and j ∈ [1, n],

• ranka(i, B) returns the number of times value a occurs in B[0..i− 1].

• selecta(j, B) returns the position of the j-th occurrence of value a in B.

An equivalent definition of select is that i = selecta(j, B) is the index in B so that
ranka(i, B) + 1 = j and B[i] = a.

Note that rank0(i, B) and rank1(i, B) can be reduced to one another by using the following
relationship: rank0(i, B) = i − rank1(i, B). Such a relationship does not exist for select
[16].

2.4.1 Uncompressed Bit Vectors

We will now show how rank queries on a bit vector B with size |B| = n can be answered
in constant time using only o(n) bits of extra space. We will show the solution in two
steps. The technique described here was first introduced in [17].

The first step divides the bit vector in blocks of size t. For each block B[kt..kt + t − 1]
we store the value of rank1(kt, B) explicitly. We choose t = 1

2 log n, so that there are
only 2t = 21/2 logn =

√
n possible blocks of size t and we can store a lookup table that

stores rank values for every position in every possible block relative to the beginning of
the block. As each of these rank values can be stored in log(1

2 log n) bits, the lookup table
takes up

√
n · 1

2 log n · log(1
2 log n) = o(n) bits in total. The key used to look up the value

in the table is the bit representation of the block itself. The lookup table is universal i.e.
it does not depend on the data in the bit vector and can be reused for other instances of
bit vectors. Figure 5 shows an example of this representation.

i = 0 1 2 3 4 5 6 7 8 9 10 11
rank1(3 · bi/3c, B) = 0 2 3 5
B[i] = 1 1 0 0 1 0 0 1 1 1 0 0

i = 1 2 3
000 0 0 0
001 0 0 1
010 0 1 1
011 0 1 2
100 1 1 1
101 1 1 2
110 1 2 2
111 1 2 3

Figure 5: A bit vector and its precalculated rank values (left) as well as the universal
lookup table (right).

In this representation, the value rank1(i, B) can be calculated as the sum of rank1(t ·k,B)
and rank1(i mod t, B[kt..kt+ t− 1]), where k = bi/tc. The first rank is precalculated for
all blocks and the second rank is stored in the universal table.

7
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However, to store the value of rank1(kt, B) for each block, we need n
t

log n = n
1/2 logn log n =

Θ(n) bits. We will now show how to reduce this space requirement by adding another
layer of blocks.

In the second step, we divide the bit vector into superblocks of size s = log2 n so that
every superblock consists of s

t
= 2 log n blocks. We can store the rank value at the

beginning of each superblock using n
log2 n

log n = n
logn = o(n) bits. The rank value at

the beginning of each block is stored relative to the beginning of the superblock, which
requires n

t
log s = n

1/2 logn log log2 n = o(n) bits.

That way we can answer a rank query in constant time using o(n) bits of space.

The select operation can also be solved in constant time using o(n) bits [18]. The solution
consists of dividing the bit vector into blocks, each of which contains r one bits. Large
blocks store the positions of the one bits explicitly while smaller blocks allow select to be
solved by a scan over a constant number of bits. Note that although both rank and select
are constant time operations, rank requires only 3 random memory accesses while select
may require a scan over a larger portion of the bit vector. Therefore, rank is commonly
faster than select in practice.

2.4.2 Sparse Bit Vectors

We will make use of bit vectors that are very sparsely populated, i.e. the number of ones is
much lower than the number of zeros. Storing these bit vectors uncompressed is wasteful.
In the following we will present a way of representing sparse bit vectors proposed by
Okanohara and Sadakane [19] which is based on an encoding in [7] and allows efficient
rank and select queries.

Given a bit vector B of size |B| = n with m ones (and n −m zeros), we define a vector
X of length |X| = m so that X[i] = select1(i + 1, B). X represents the positions of the
set bits in B. For a parameter t, we represent X using two data structures: H represents
the upper h = dlog te bits of the values in X and L the lower l = dlog ne − dlog te bits of
the values in X.

We define two functions that map each value x to their two parts. The function high(x) =
bx/2lc gives the value of the upper part of x, while low(x) = x mod 2l gives the lower
part.

We consider the vector D with D[0] = high(X[0]) and D[i] = high(X[i])−high(X[i−1])
for 0 < i < m that gives the differences between the upper part of two subsequent entries
in X. H is the unary representation of the values in D, i.e. for each entry in D, H contains
D[i] zeros terminated by a one. L is stored explicitly using m · l bits. Figure 6 shows an
example.

Since the values in D sum up to high(X[m − 1]), their sum has an upper bound of 2h,
so there are at most 2h = 2dlog te zeros and m ones in H and it requires at most t + m
bits, while L stores m entries of size log n

t
each using m log n

t
bits (neglecting rounding).

In total, H and L require t+m+m log n
t
bits, which is minimal for t = m log e ≈ 1.44m.

We use the data structure from Section 2.4.1 to allow rank and select queries on H and
L, which is asymptotically smaller than the respective bit vector.
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B = 00010000000101000010010011001000

X[i] high(X[i]) low(X[i]) D[i]
3 0001 1 1

11 0101 1 4
13 0110 1 1
18 1001 0 3
21 1010 1 1
24 1100 0 2
25 1100 1 0
28 1110 0 2

H = 01 00001 01 0001 01 001 1 001
L = 11101010

Figure 6: Example of the representation of a sparse bit vector. The values in X are
separated into 4 high bits and 1 low bit.

To answer rank1(i, B), we first query rank1(select0(high(i), H), H) = select0(high(i), H)−
high(i) + 1 to find the number of ones in B[0..high(i) · 2l − 1]. The remaining number
of ones in B[high(i) · 2l..i− 1] is then determined by performing a binary search over the
values in X (represented by H and L). In the worst case, there are up to m ones in this
interval, resulting in O(logm) time for this step. On average, there are only m

t
= O(1)

ones in this interval, resulting in O(1) average runtime.

Selection of the j-th one is performed in the following way:

select1(j, B) = rank0(select1(j,H)) · 2l + L[j − 1]
= (select1(j,H)− j + 1) · 2l + L[j − 1]

We recall that rank0 queries can be reduced to rank1 queries in the following way:

rank0(i, B) = i− rank1(i, B)

It remains to be shown how to solve select0 queries. One way is finding the largest j so
that select1(j, B)− j + 1 < i using binary search. The result is select0(i, B) = i− 1 + j.
Since there are m ones in B, this takes logm steps.

To summarize, we can represent a bit vector B of size |B| = n with m ones using
O(m log n

m
) bits, allowing rank queries in O(logm) time in the worst case and constant

time in the average case, select1 queries in constant time and select0 queries in O(logm)
time.

2.4.3 Entropy-Compressed Bit Vectors

The bit vector presented in Section 2.4.2 is well-suited to represent sparse bit vectors.
Raman et al. propose a compressed bit vector representation that supports rank and

9
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select queries in constant time and requires space close to the information-theoretic lower
bound for arbitrary binary sequences [20].

The basic idea is to divide the bit vector into blocks of length t and group them into
classes according to the number of ones they contain. The class Cm contains all blocks
that have m ones. Each block in the bit vector is identified by a pair (c, o) giving its class
c and the offset o which is the position of the block inside its class. Note that the number
of blocks in each class varies depending on m. The class Cm contains

(
t
m

)
different blocks,

so that an offset in class Cm can be stored using dlog
(
t
m

)
e bits. Hence, blocks that are

very dense or very sparse have a shorter representation, resulting in a compression for
appropriately shaped bit vectors.

For a detailed description of the data structure and how to perform rank and select
queries, we refer the reader to the original publication by Raman et al. [20].

2.5 Wavelet Trees

In Section 2.4, we have solved rank and select for bit vectors. We will now extend the
rank and select operations to strings of characters over the alphabet Σ:

For a string S of length |S| = n, α ∈ Σ, i ∈ [0, n] and j ∈ [1, n],

• rankα(i, S) returns the number of times character α occurs in S[0, i− 1].

• selectα(j, S) returns the position of the j-th occurrence of character α in S.

A naive solution is to store a separate bit vector for every character α ∈ Σ, allowing
constant time rank and select using O(nσ) space. Using the wavelet tree [21], we can
trade off some runtime for storage space and perform rank and select in time O(log σ)
using O(n log σ) space.

A wavelet tree is a balanced binary search tree in which every node v represents a set of
characters. The tree has σ leaves, each representing a character α ∈ Σ and σ − 1 inner
nodes, representing the union of their respective children. Let Sv be the subsequence of
S that contains all occurrences of characters represented by the node v. Note that this
sequence is only conceptual and will not be stored. Instead, for every inner node v in
the wavelet tree, we store a bit vector Bv that indicates for each character in Sv if that
character is represented by the left (= 0) or the right (= 1) child of v. Figure 7 shows an
example of a wavelet tree.

We solve rankα(i, B) by traversing the wavelet tree from the root to the node representing
α. By performing rank on the bit vector associated with each node we visit, we get the
position of the character in the subsequence associated with the next child. The last
position, the position of the character in the subsequence associated with the leaf, is
rankα(i, B).

For example, we compute ranki(9, S) for S = ’ipssm$pissii’ using the wavelet tree shown
in Figure 7 in the following way:

ranki(9, S) = rank1(rank0(rank0(9, B0)︸ ︷︷ ︸
6

, B1)

︸ ︷︷ ︸
3

, B2) = 2

10
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ipssm$pissii
001100001100

ipm$piii
01101000

i$iii
10111

$ iiii

pmp
101

m pp

ssss

B0

B1

B2 B3

Figure 7: A wavelet tree for the string ’ipssm$pissii’, which is the Burrows-Wheeler trans-
form of ’mississippi$’. We will introduce the Burrows-Wheeler transform in
Section 2.7. Each node is represented by its subsequence of S (upper half) and
its bit vector (lower half).

We solve selectα(j, B) by traversing the tree bottom-up from the leaf that represents α
to the root. At each step, we perform a select on the bit vector associated with the node,
which yields the position of the character in the subsequence associated with the parent
node. The last position is the position of the character in the sequence associated with
the root, which is S itself.

For example, we compute selectp(2, S) for S = ’ipssm$pissii’ using the wavelet tree shown
in Figure 7 in the following way:

selectp(2, S) = select0(select1(select1(2, B3)︸ ︷︷ ︸
2

+1, B1)

︸ ︷︷ ︸
4

+1, B0) = 6

Since the tree is balanced, it has dlog σe levels. We solve rank and select on each level in
constant time using the method described in Section 2.4.1, so that we need O(log σ) time
for rank and select using the wavelet tree. As the sets of characters represented by nodes
in the same level are disjoint, each level contains at most n bits and the total amount of
space required for the wavelet tree is O(n log σ) bits.

2.6 Succinct Trees

In classical suffix tree representations, the tree structure is represented by pointers con-
necting the nodes of the tree with each other. For a tree with n nodes, a pointer needs
to distinguish between all of these nodes and hence requires at least log n bits, adding up
to n log n bits for the tree.

2.6.1 Balanced Parentheses Sequences

One way to achieve a succinct representation of a tree is storing it as a sequence of
balanced parentheses so that every node corresponds to a pair of parentheses. Every node

11
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is enclosed by the pair of parentheses representing its parent, except for the root, which
is represented by the first (opening) and last (closing) parenthesis. The tree represented
this way is an ordinal tree, i.e. the children of each node have an explicit order, which is
represented by the order of their appearance in the balanced parentheses sequence (BPS
in the following). Figure 8 shows an example of an ordinal tree and its BPS.

0

1

2

5

6 8 10

P = ((())(()()()))

Figure 8: An ordinal tree and its balanced parentheses sequence. The nodes are labeled
with the position of their opening parenthesis in the BPS.

The BPS of a tree can be constructed by performing a depth first search on the tree,
writing an opening parenthesis when visiting a node for the first time and a closing
parenthesis after all its children have been visited.

We are interested in a number of navigational operations on the tree:

• root returns the root of the tree.

• is-leaf(v) returns whether the node v is a leaf.

• ancestor(v, v′) returns whether v is an ancestor of v′.

• parent(v) returns the parent of a node v.

• first-child(v)/last-child(v) return the first/last child of a node v.

• next-sibling(v)/prev-sibling(v) return the next/previous sibling of a node v.

• LCA(v, v′) returns the lowest common ancestor of v and v′.

• pre-order(v) returns the number of nodes that are visited before v in a pre-order
traversal.

• left-rank(v) returns the number of leaves that are visited before v in a pre-order
traversal.

• right-rank(v) returns the number of leaves that are visited before the last leaf in
the subtree of v in a pre-order traversal.

Note that the ancestor relation is the transitive reflexive closure of the parent relation.
In particular, this implies that any node v is an ancestor of itself.

All the above operations can be implemented using the following operations on the BPS:

• inspect(i) returns whether the parenthesis on position i is an opening parenthesis.

• rank((i) returns the number of opening parentheses in the interval [0, i− 1].

• rank()(i) returns the number of occurrences of the pattern ’()’ in the interval [0, i−1].

12
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• find-close(i) returns the position of the closing parenthesis matching the opening
parenthesis on position i.

• find-open(i) returns the position of the opening parenthesis matching the closing
parenthesis on position i.

• enclose(i) returns the position of the rightmost opening parenthesis that together
with its matching parenthesis encloses the parenthesis on position i.

• double-enclose(i, j) returns the position of the rightmost opening parenthesis that
together with its matching parenthesis encloses both i and j.

Nodes are identified by the position of their opening parenthesis in the BPS. In the
following, we will refer to nodes and the position of their opening parenthesis in the BPS
indifferently. The navigational operations are implemented using the operations on the
balanced parentheses sequence as follows:

root = 0
is-leaf(v) = inspect(v + 1) = ’)’

ancestor(v, v′) = v ≤ v′ ∧ find-close(v′) ≤ find-close(v)
parent(v) = enclose(v)

first-child(v) = v + 1
last-child(v) = find-open(find-close(v)− 1)

next-sibling(v) = find-close(v) + 1
prev-sibling(v) = find-open(v − 1)

LCA(v, v′) = double-enclose(v, v′)
pre-order(v) = rank((v)
left-rank(v) = rank()(v)
right-rank(v) = rank()(find-close(v))− 1

In the following, we will introduce a data structure proposed by Sadakane and Navarro
[22] that solves the above operations efficiently and is small and fast in practice.

We denote by P a BPS of length |P | = n. We will implement P as an uncompressed
bit vector and represent opening and closing parentheses by 1 and 0 respectively. The
inspect operation is just an access to P . We can solve rank((i) = rank1(i, P ) in constant
time using the data structure from Section 2.4.1. We can also solve rank()(i) using the
same data structure by evaluating rank1(i, P ′) for a bit vector P ′ of length |P ′| = n− 1
which is defined as follows:

P ′[i] :=
1 if P [i] = 1 ∧ P [i+ 1] = 0

0 else

P ′ is not stored explicitly. Its values can be computed when necessary by accessing P .

We will now focus on the remaining operations and define the following auxiliary functions:

13
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Definition 7. [22] For a bit vector P [0, n− 1] and a function g(·) ∈ {0, 1} × {−1, 1},

sum(P, g, i, j) =
j∑
k=i

g(P [k])

fwd-search(P, g, i, d) = min
j≥i
{j | sum(P, g, i, j) = d}

bwd-search(P, g, i, d) = max
j≤i
{j | sum(P, g, j, i) = d}

rmq(P, g, i, j) = min
i≤k≤j

{sum(P, g, i, j)}

rmqi(P, g, i, j) = argmin
i≤k≤j

{sum(P, g, i, j)}

RMQ(P, g, i, j) = max
i≤k≤j

{sum(P, g, i, j)}

RMQi(P, g, i, j) = argmax
i≤k≤j

{sum(P, g, i, j)}

Definition 8. [22] Let π be the function such that π(1) = 1 and π(0) = −1. Given
P [0, n − 1], we define the excess array E[0, n − 1] of P as an integer array such that
E[i] = sum(P, π, 0, i).

E stores for every position in P the excess, i.e. the difference between the number of
opening and closing parentheses to the left of that position.

The functions from Definition 7 can be used to implement the remaining operations:
find-close(i) = fwd-search(P, π, i, 0)
find-open(i) = bwd-search(P, π, i, 0)
enclose(i) = bwd-search(P, π, i, 2)

double-enclose(i, j) =


i if ancestor(i, j)
j if ancestor(j, i)
enclose(rmqi(P, π, i, j) + 1) else

2.6.2 The Range Min-Max Tree

The functions from Definition 7 can be solved efficiently using a range min-max tree.

Definition 9. [22] A range min-max tree for a vector P[0, n-1] and a function g(·) is
defined as follows: Let [l1..r1], [l2..r2] . . . [lq, rq] be a partition of [0..n − 1] where l1 =
0, ri + 1 = li+1, rq = n − 1. Then the i-th leftmost leaf of the tree stores the sub-
vector P [li, ri], as well as e[i] = sum(P, g, 0, ri), m[i] = e[i − 1] + rmq(P, g, li, ri) and
M [i] = e[i − 1] + RMQ(P, g, li, ri). Each internal node u stores in e[u]/m[u]/M[u] the
last/minimum/maximum of the e/m/M values stored in its child nodes. Thus, the root
node stores e = sum(P, g, 0, n−1), m = rmq(P, g, 0, n−1), andM = RMQ(P, g, 0, n−1).

We divide P into blocks of size s, so that Bi = P [is..is+s−1]. Each block is a leaf of the
range min-max tree. We will assume that the range min-max tree is k-ary for a constant
value of k and complete, so that the values of e, m and M can be stored in an integer
array, like the nodes of a heap. An example of such a tree is shown in Figure 9.

Note that the values of the excess array are not stored explicitly. The value of E[i] can be
computed from the last excess value e[j] of the preceding block j = bi/sc and the values
in P .
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0/4

1/4
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Figure 9: An example of a range min-max tree for the excess array and k = s = 3. Each
node ui is represented by its minimum/maximum value m[ui]/M [ui].

We will now show how fwd-search(P, π, i, d) can be solved using a range min-max tree
over the excess array (i.e. using the π function). The solution for bwd-search is symmetric.

We choose s = 1
2 log n, so that we can pre-compute fwd-search(B, π, i, d) for B ∈

{0, 1}s, i ∈ [0, s−1], d ∈ [−s, s] as a universal lookup table in space 2s ·s · (2s+1)dlog se =
O(
√
n log2 n log log n) = o(n), similar to what we did in Section 2.4.1.

We are looking for the first value j ≥ i so that sum(P, π, i, j) = d. We first check whether
fwd-search(P, π, i, d) is in the same block as i using the universal lookup table. If this
is not the case, we start looking for j ≥ i so that E[j] = d′ with d′ = E[i − 1] + d. We
check the next node u, which is either the right sibling of the current node or the sibling
of its parent node if the current node has no right sibling. The range represented by the
node u contains fwd-search(P, π, i, d) iff m[u] ≤ d′ ≤ M [u]. If we find such a node, we
start descending into its subtree until we arrive at the leaf that contains the result. We
find the position of the parenthesis inside the block using the universal lookup table.

In the process, we need to check at most 2k nodes at each of the logk n/s levels of the
tree, amounting to O(log n) time.

Consider we want to calculate the value of find-close(5) = fwd-search(P, π, 5, 0) in the
example depicted in Figure 9. We start by checking block u5, which contains the index
5. We look up fwd-search(P [3..5], π, 2, 0) in the universal lookup table and find that u5
does not contain fwd-search(P, π, 5, 0). We continue by searching for the index j ≥ 5
so that E[i] = d′ with d′ = E[5 − 1] + 0 = 1. Next, we check sibling u6, which does
not contain the resulting value since 3 = m[u6] > d′ = 1. As u6 has no right sibling,
we check u2, the sibling of its parent. Since m[u2] ≤ d′ ≤ M [u2], we descend into u2
and check u7, u8 and u9. The position of the final result is calculated as the sum of
fwd-search(P [15..17], π, 0, d′ − E[14]) = 1, which is retrieved using the universal lookup
table, and the beginning offset of block u9, 15. The final result is thus 16.

The rmqi(P, π, i, j) and RMQI(P, π, i, j) function are solved in a similar fashion, although
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the process comprises two steps. In the first step, we examine up to 2k nodes that cover the
interval [i, j−1]. In the second step, we find the leftmost of these nodes that contains the
minimum excess value and descend into its subtree to find the position of said minimum.

The range min-max tree has kdn/se−1
k−1 = O(n

s
) nodes, each of which requires log n bits

to store each value of e, m and M . We use s = 1
2 log n, so that the universal lookup

table requires o(n) bits and e, m, and M require O(n) bits. We can reduce the space
consumption to o(n) bits of extra space by introducing superblocks and storing values
relative to the beginning of the superblock. Also, it is not necessary to store e explicitly,
since its values can be calculated by E[i] = 2 · rank(i, P )− i.

Note that although the approach we outlined here performs well in practice, all operations
can also be solved in constant time using o(n) bits of extra space [23].

2.7 Compressed Suffix Arrays

The term compressed suffix array (CSA) was coined by Grossi and Vitter [7], who pro-
posed the first compressed suffix array representation. We will use the term in a more
general sense to refer to different succinct data structures that emulate the functionality
of the suffix array. In particular, we will concentrate on the FM-index by Ferragina and
Manzini [8], which is based on backward search using the Burrows-Wheeler transform
[24]. In addition to the functionality that suffix arrays provide, the FM-index and other
compressed suffix arrays provide a number of additional operations, which we will intro-
duce in this section. Also note that in contrast to the suffix array the FM-index does
not need the original text to perform any of its operations. Moreover, it can be used to
efficiently reconstruct the text or parts of it.

2.7.1 Burrows-Wheeler Transform

We start by introducing the Burrows-Wheeler transform (BWT in the following) and
showing how it can be used to index a text. The Burrows-Wheeler transform is commonly
defined using the rotations of the text.

Definition 10. A rotation of the string T with n = |T | is a concatenation of a suffix and
a prefix of the form T [i..n− 1].T [0..i− 1] for 0 ≤ i < n.

We consider a matrix of size n× n, which contains as its rows all rotations of the string
T , sorted lexicographically. Figure 10 (left) shows an example of such a matrix. The last
column (denoted by L) represents the Burrows-Wheeler transform. The first column is
denoted by F . Note that the matrix is only conceptual and will not be stored.

As each rotation begins with a suffix of T and each suffix has a terminal character $ which
does not occur anywhere else in the text, the order of the rotations is the same as the
order of the suffixes in the suffix array. The BWT can thus be computed using the suffix
array of the text T by concatenating for each suffix array entry the character preceding
it in the text:

L[i] = T [(SA[i]− 1) mod n]
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Figure 10: All rotations of the string ’mississippi$’, sorted lexicographically (left) as well
as an illustration of the LF mapping (right). The Burrows-Wheeler transform
consists of the characters in the last column (labeled L) read from top to
bottom.

We store L using a wavelet tree (see Section 2.5), allowing efficient rank and select queries.
We also need a representation for F . Since the rotations are sorted, F can be split into
σ ranges each consisting only of multiple repetitions of a single character. Therefore, we
represent F as an array C that contains for each character α ∈ Σ the position in F at
which the range of α begins:

C[α] := selectα(1, F )

We determine the value of F [i] using binary search over C.

2.7.2 LF and ψ Function

When dealing with compressed suffix arrays, we have to distinguish between different
orders of the rotations (or suffixes). The suffix order is their lexicographic order (the order
in the suffix array). For instance, the rotation preceding ’ippi$mississ’ in suffix order is
’i$mississipp’. The text order is the order of the rotations according to the position of
their first character in the text. For example, the rotation preceding ’ippi$mississ’ in text
order is ’sippi$missis’.

The LF (last-to-front) function maps each rotation to its preceding rotation in text order.

Definition 11. Given a suffix array SA, the LF mapping is a function LF so that for
0 ≤ i < n, the following holds:

SA[LF (i)] ≡ SA[i]− 1 (mod n)

If we consider all rotations that have the same character α in L, we observe that the
rotations preceding them in text order are also in sorted order since each of them starts
with the same character α and the subsequent string is a prefix of the original rotation,
which is sorted. Therefore, the i-th occurrence of a character in L has the same position
in the text as the i-th occurrence of said character in F . This observation, which is
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illustrated in Figure 10 (right), can be used to calculate the LF function using only C
and L:

LF (i) = C[L[i]] + rankL[i](i, L)

Access to L and rank both take O(log σ) time while C can be accessed in constant time.
Therefore, we can calculate LF in O(log σ) time. As LF is a building block of the
algorithms we present in this thesis, we will denote the time required for the evaluation
of LF with tLF = O(log σ).

The LF function can be used to reconstruct the text by traversing the text in reverse
direction. At each step we retrieve the character at the beginning of the rotation by
looking at C.

The inverse of the LF function is the ψ function, which maps each rotation to its subse-
quent rotation in text order:

Definition 12. Given a suffix array SA, ψ is a function so that for 0 ≤ i < n, the
following holds:

SA[ψ(i)] ≡ SA[i] + 1 (mod n)

Note than ψ is similar to slink, as slink(v) = ψ(v) for a leaf v of a suffix tree. The ψ
function is calculated using C and L analog to the LF -function:

ψ(i) = selectF [i](i− C[F [i]] + 1, L)

We recall that F is determined via binary search over C.

We denote the time required for the evaluation of ψ by tψ = O(log σ). Note that although
LF and ψ have the same time complexity, in practice the evaluation of LF is faster than
ψ for FM-indexes, because rank is faster than select (see 2.4.1).

2.7.3 Backward Search

We will now show how the Burrows-Wheeler transform can be used to solve the string
matching problem. Since the rotations in the BWT, just like the suffixes in the SA,
are sorted, we can represent all rotations that share a common prefix as an interval of
rotations. In the following, we will refer indifferently to a string v and the interval of
rotations that are prefixed by v.

We use a concept similar to the LF function to find a pattern in the Burrows-Wheeler
transform. Suppose we want to find all occurrences of the pattern P in the text. We
do this by performing a stepwise backward search, starting with the empty pattern and
subsequently finding all occurrences of a suffix of P that is one character longer than
the pattern matched in the previous step. Algorithm 1 shows how backward search is
performed.

After at most m steps, we obtain the interval that represents all rotations starting with
the pattern P . The size of the interval tells us the number of appearances of pattern P .
If the interval is empty, the pattern does not appear in the text. Using backward search
we can solve count in 2m · tLF = O(m log σ) time using the FM-index.
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Algorithm 1: Backward search using the FM-index.
1 Algorithm backward-search(P [0,m− 1])
2 i← m
3 s← 0
4 e← n
5 while i > 0 and s < e do
6 α← P [i− 1]
7 s← C[α] + rankα(s, L)
8 e← C[α] + rankα(e, L)
9 i← i− 1

10 return [s, e− 1]

Performing one step of backward search is the equivalent of adding a character α to the left
of the string X. Due to its relationship to the LF function, we will denote the operation
as LF (α,X), where X is a string represented by an interval over the CSA and α is the
character to be appended to the string. It is calculated as follows:

LF (α, [s, e]) = [C[α] + rankα(s, L), C[α] + rankα(e+ 1, L)− 1]

Moreover, we extend LF to strings, so that LF (Y,X) yields the interval representing the
string Y.X, which is obtained by successively applying LF with the characters in Y .

In the context of suffix trees, LF is also known as the Weiner link, which is the inverse
of the suffix link. For any suffix tree node v 6= root:

LF (α, slink(α.v)) = α.v

2.7.4 Locate Functionality

We now know how to navigate back- and forwards in the text using the LF and ψ func-
tions. We also know how to apply string matching and count the number of occurrences
of a pattern. But to actually find the positions of these occurrences in the text and solve
locate queries, we need to access the values in the suffix array. As storing the SA com-
pletely requires too much space, we will store only a sampling of the SA and use LF to
navigate to a sampled position.

One way of sampling the SA is storing the value of SA[i] if i ≡ 0 (mod θ) where θ is the
sampling factor. This is called a suffix order sampling, as the position in the SA determines
whether an entry is sampled. According to the definition of LF , SA[i] = SA[LF (i)] + 1.
To get the value of SA[i] if it is not sampled, we apply LF until we find a value that is
sampled. In the worst case, we need n− n

θ
applications of LF .

Another way of sampling the SA is storing all values of SA[i] for which SA[i] ≡ 0 (mod θ).
This is called a text order sampling, as the position in the text determines whether an
entry is sampled. On average, we need θ

2 applications of LF to calculate the value of
SA[i]. In the worst case, we apply it θ times. However, since we do not know for which
values of i the value of SA[i] is sampled, we have to store this information explicitly using
an additional bit vector. Since this bit vector is sparsely populated, we can represent it
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in O(n
θ

log θ) bits (see Section 2.4.2). In total, the sampling requires n
θ
dlog ne+O(n

θ
log θ)

bits. Using θ = Ω(log n), the sampling requires O(n) bits.

We denote by tSA the time required to access a value of the suffix array. For the text
order sampling, tSA = θ · tLF = O(log n log σ).

In addition to the values in the SA, we will also make use of the values of the inverted
suffix array (ISA in the following), denoted by ISA = SA−1. ISA[j] gives the position
in the suffix array of the suffix starting at position j. The ISA is sampled in a similar
fashion as the suffix array. Using θ = Ω(log n), the ISA sampling requires O(n) bits and
can be accessed in tISA = θ · tLF = O(log n log σ) time.

There are newer techniques that improve upon sampling both the SA and the ISA sepa-
rately by making use of the correspondence between the two [25].

Using the values in the SA and the ISA, we can implement ψk in a way that is faster
than evaluating the ψ function k times successively for large values of k. We recall that
SA[ψ(i)] ≡ SA[i] + 1 (mod n) according to the definition of ψ. Hence, by applying
ISA = SA−1 to both sides, we get ψ(i) ≡ ISA[SA[i] + 1] (mod n). We calculate
ψk(i) = ISA[SA[i]+k] (applying reduction modulo n where necessary) in tSA+ tISA time
for any value of k. This is especially useful to extract the d-th character in the suffix
starting at position SA[i], which is achieved by calculating F [ψd(i)]. We will refer to the
time required to calculate ψk as ttext = tSA + tISA.

2.7.5 Summary

To summarize, we can represent an FM-index of a text T of size |T | = n over an alphabet
Σ of size |Σ| = σ using O(n log σ) bits. For a pattern P of size |P | = m, the FM-index
solves count in O(m log σ) time and locate in tSA = O(log n) time. The ψ and LF
functions are calculated in tψ = O(log σ) and tLF = O(log σ) time respectively.

Note that using a Huffman-shaped wavelet tree, the space consumption can be reduced
to O(nH0) + o(n) bits5 [26].

2.8 Compressed Suffix Trees

Compressed suffix arrays are missing some of the functionality that suffix trees provide.
In particular, inner nodes are not represented, so that the suffix link for inner nodes as
well as the lowest common ancestor of two nodes cannot be calculated efficiently using
compressed suffix arrays.

Compressed suffix trees address this shortcoming by extending a compressed suffix array
with additional data structures representing the structure of the suffix tree. We use the
term compressed suffix tree to refer to an abstract data type that supports the operations
described as follows.

A compressed suffix tree (CST) of a text T is a data structure that supports the following
operations:

5H0 is the zeroth order empirical entropy of the text.
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• root returns the root of the suffix tree.

• is-leaf(v) returns whether the node v is a leaf.

• parent(v) returns the parent of node v.

• child(v, α) returns the child v.α of node v.

• first-child(v) returns the first child of node v.

• next-sibling(v) returns the next sibling of node v.

• letter(v, d) returns the character L[d] of the path-label L of node v.

• slink(v) returns the suffix link of node v.

• LCA(v, v′) returns the lowest common ancestor of v and v′.

• depth(v) returns string depth of v, i.e. the length of the path label of v.

Sadakane [9] proposed the first data structure that implements all of the above operations
efficiently usingO(n) bits on top of the size of the compressed suffix array. In the following,
we will describe this data structure.

The compressed suffix tree consists of three parts: A compressed suffix array, a compressed
longest common prefix (LCP) array and a succinct tree representation of the suffix tree
topology.

Definition 13. For two strings T and T ′, let

lcp(T, T ′) := argmax
k
{0 ≤ k ≤ min(|T |, |T ′|) ∧ T [0..k − 1] = T ′[0..k − 1]}

The LCP array, denoted by LCP , is an array of size n as follows:

LCP [i] =
lcp(T [SA[i]..n− 1], T [SA[i+ 1]..n− 1]) if 0 ≤ i < n− 1

0 else

The LCP array stores the length of the longest common prefix of each two suffixes at
consecutive positions in the suffix array.

Theorem 1. [9] Given i and SA[i], the value LCP [i] can be computed in constant time
using a data structure of size 2n+ o(n) bits.

The data structure makes use of the fact that LCP [ψ(i)] ≥ LCP [i] − 1. Therefore, the
LCP values can be reordered so that they form an ascending sequence. The sequence
si = LCP [ψi(p)] + i for i ∈ [0, n− 1], where p = ISA[0] is the longest suffix, is ascending
and sn−1 = n − 1. Hence, the difference between two consecutive values in the sequence
can be stored using a unary encoding, resulting in 2n− 2 bits in total.

The succinct tree representation from Section 2.6 already provides solutions to root,
is-leaf(v), parent(v), first-child(v), next-sibling(v) and LCA(v, w). It remains to be
shown how to solve child(v, c), letter(v, d), slink(v) and depth(v).
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Extracting Path-Labels

To solve letter(v, d), we note that the path label of node v is a prefix of the path label of
all leaves in the subtree rooted at v. Hence, we only need to extract the d-th character
of any of the suffixes represented by the leaves. The function left-rank(v) denotes the
leftmost of these leaves. We determine the d-th character as follows:

letter(v, d) = F [ψd(left-rank(v))]

We recall that ψd can be calculated either in d · tψ = O(d log σ) time or in ttext =
O(log n log σ) time (see Section 2.7.4).

Calculating String Depths

To calculate the string depth of a node v, we distinguish between leaves and inner nodes.

The string depth of a leaf is the length of the suffix it represents. We can calculate it
using the suffix array:

depth(v) = n− SA[left-rank(v)]

For an inner node v, we recall that all its children differ in the branching letter, which is
the character at position d = depth(v). Hence the path label of v is the longest common
prefix of any pair of children of v. We calculate its length by looking up in the LCP array
the value of the rightmost leaf in the subtree rooted at the first child of v:

depth(v) = LCP [right-rank(first-child(v))]

This gives the length of the longest common prefix between the rightmost leaf of the first
child of v and the leftmost leaf of the second child of v.

Navigating to Child Nodes

One way of navigating to a child v.α of a node v is to check the branching letter of each
child of v. We iterate over the children of v using first-child and next-sibling. For each
child v′, we check the first character of the edge label from v to v′, which is given by
letter(v′, depth(v)+1). We require up to σ steps, each of which requires ttext+O(1) time,
so in total, the time is O(ttext · σ) = O(σ · log n log σ).

The process can be sped up by performing a binary search. We still need to check all
children using first-child and next-sibling first, which takes O(σ) time, but we then
perform a binary search on these children, which requires only O(log σ) accesses to the
text. The total time is O(σ + ttext log σ) = O(σ + log n log2 σ).

Calculating the Suffix Link

The compressed suffix array provides the ψ function, which solves the suffix link operation
for leaves. To solve the suffix link for inner nodes, we apply the ψ function to the leftmost
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and rightmost leaf rooted in the subtree of v and calculate the lowest common ancestor:

slink(v) = LCA(ψ(left-rank(v)), ψ(right-rank(v)))

For a proof of correctness, see the proof to Lemma 2, which is given in Section 3.1.1.

Also note that we can calculate slinkk in O(ttext) time by making use of ψk on the CSA.

3 Fully-Compressed Suffix Trees

Although compressed suffix trees are already very small, they still require O(n) bits on top
of the space of the CSA. Fully-compressed suffix trees, as proposed by Russo et al. [10],
break the linear space barrier by storing only a sampling of the nodes from the original
suffix tree. The sampled nodes are chosen in such a way that the information about
the non-sampled nodes can be restored. This process of restoring requires additional
computational overhead compared to traditional CST representations. The overhead is
typically polylogarithmic in the input size.

In this section, we present the original proposal by Russo et al. [11], a variant proposed
by Navarro and Russo [13] that uses a sparser sampling of the string depth and a third
variant that uses a binary tree to provide faster pattern matching capability.

3.1 Original Proposal

3.1.1 Basics

We start by giving the definition of a δ-sampled tree, which is the primary component of
the fully-compressed suffix tree representation.

Definition 14. [11] A δ-sampled tree S of a suffix tree T with t nodes is formed by
choosing s = O(t/δ) nodes of T so that, for each node v of T , there is an i < δ such that
node slinki(v) is sampled.

This means that for each node v, there is at least one sampled node in the sequence v,
slink(v), slink(slink(v)), ..., slinkδ−1(v). Since slink(root) is not defined, the root of the
tree is always sampled.

Note that because there are at most t ≤ 2n nodes in the suffix tree, the number of sampled
nodes is also O(n/δ).

We achieve a δ-sampling by choosing the root and every node v that satisfies the following
two conditions6:

(i) depth(v) ≡ 0 (mod δ/2)

(ii) There is a node v′ ∈ S such that v = slinkδ/2(v′)
6In the following, we assume that δ is a multiple of two. We note that the sampling works for any value
of δ ≥ 2 by using bδ/2c instead of δ/2.
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We now have a subset of nodes of T , but no edges. To form a tree out of these nodes,
we have to assign each node a parent in S. The obvious choice is to construct the tree in
such a way that the parent of each node in S (except the root) is its lowest ancestor in T .
This means that for two sampled nodes v1 and v2, v1 is an ancestor of v2 in the sampled
tree iff v1 is an ancestor of v2 in T . Figure 11 shows an example of a suffix tree and its
δ-sampled tree for δ = 4.
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Figure 11: The suffix tree of the string ’sannanana$’ (left) and its 4-sampled tree (right).
The nodes of the suffix tree which are in the 4-sampled tree are highlighted
(black border).

We reproduce the proof from [11] that the above construction rule results in a δ-sampled
tree.

Proof. For each node v with d = depth(v), we distinguish two cases. If d < δ, then
slinkd = root is sampled. If d ≥ δ, then there are exactly two values of i ∈ [0, δ − 1] so
that depth(slinki(v)) = depth(v) − i ≡ 0 (mod δ/2). For the largest of those i values,
slinki(v) is sampled, since the second sampling condition holds as well. Also, for each
node v 6= root that is sampled, there are δ/2 − 1 nodes vi so that slinki(vi) = v for a
value of i ∈ [1, δ/2 − 1]. Those vi are not sampled because depth(vi) 6≡ 0 (mod δ/2). So
there are s ≤ 1 + t/(δ/2) = O(t/δ) = O(n/δ) sampled nodes.

We represent the sampled tree using its balanced parentheses sequence S (see Section
2.6). Nodes in the sampled tree are identified by the position of their opening parenthesis
in the BPS of the sampled tree. Since not all nodes in the suffix tree are represented in
the sampled tree, we will represent each node using its interval in the CSA. For example,
the inner node v4 in the suffix tree is represented by the interval [5, 8], while leaf l3 is
represented by [3, 3]. Note that since the suffix tree is compact, each node is uniquely
identified by an interval in the CSA. In the following, we will refer to a node and its
interval in the CSA indifferently.

We will now show how to map the nodes of the sampled tree to their corresponding
interval in the CSA.
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Definition 15. [11] Let T be a suffix tree of a text of length n and let S be the balanced
parentheses representation of a δ-sampled tree with s nodes of T . The leaf mapping B is
a bit vector of size n + 2s containing 2s ones corresponding to the parentheses in S and
n zeros corresponding to the leaves in the suffix tree. They are interleaved in such a way
that iff a leaf v is in the subtree rooted at a sampled node u, its corresponding zero in B
is located between the ones corresponding to the opening and closing parentheses of u.

Since the leaf mapping contains only 2s ones, we can represent it as a sparse bit vector
(see Section 2.4.2) using O(s log n

s
) = O(n

δ
log δ) bits and support rank and select queries.

T: ((0)((1)(((2)(3))(4)))(((5)((6)(7)))(8))(9))

S: ( ( ) ( )( ) ( )( ) )
B: 1 0 101 101101 0 1 0 0 0 1101 0 1

Figure 12: Balanced parentheses representation of the suffix tree (T) as seen in Figure
11 and its sampled tree (S). The leaf mapping (B) of the sampled tree is also
shown. The numbers in T are just for illustration purposes and not part of the
representation.

The leaf mapping can be used to determine the interval in the CSA that a sampled node
represents. A sampled node u ∈ [0, s− 1] represents the interval [vl, vr], where

vl = rank0(select1(u+ 1, B), B)
= select1(u+ 1, B)− u

vr = rank0(select1(find-close(u) + 1, B), B)− 1
= select1(find-close(u) + 1, B)− find-close(u)− 1

An operation that is essential for the implementation of all the following operations is the
lowest sampled ancestor of a node v, denoted as LSA, that returns the lowest ancestor
of v that is in the sampled tree. Since the root is an ancestor of every node in T and
sampled, such a node always exist.

For a leaf v = [v, v], LSA(v) can be computed using the leaf mapping. We define an
auxiliary function pred(v) which gives the position of the rightmost parenthesis in S to
the left of leaf v:

pred(v) = rank1(select0(v + 1, B), B)− 1
= select0(v + 1, B)− v − 1

We recall that an ancestor of a node v is represented by a pair of parentheses enclosing
v. The tightest such enclosing pair of parentheses is the lowest ancestor of node v. If the
parenthesis in S at position pred(v) is an opening parenthesis, it encloses v and certainly
belongs to the tightest pair of enclosing parentheses. It thus represents the lowest sampled
ancestor of v. If the parenthesis in S at position pred(v) is a closing parenthesis, it does
not enclose v. Neither do any siblings of it, since they are either left or right of v. The
pair of parentheses enclosing pred(v) also encloses v, since its opening parenthesis is left
of pred(v) (it encloses it) and the closing parenthesis is right of pred(v) and therefore also
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v. It thus represents the lowest sampled ancestor of v. The following computation rule
formalizes this:

LSA(v) =
pred(v) if S[pred(v)] = ’(’
encloseS(find-openS(pred(v))) else

For example, when evaluating LSA(l4), we find at position pred(l4) = 6 in S the closing
parenthesis of l3. Hence, neither l3 nor any of its siblings is an ancestor of l4. Therefore the
lowest sampled ancestor of l4 is the parent of l3 in the sampled tree i.e. LSA(v4) = root.

We will now show an essential property of the LSA operation, namely the fact that
calculating the lowest common ancestor in the sampled tree is essentially the same as
calculating the lowest common ancestor in the original suffix tree with regard to LSA, or
in other words: LSA is a homomorphism from the structure of LCA in T to the structure
of LCA in S. We formalize this in the following lemma:

Lemma 1. [11] For a δ-sampled tree S of a suffix tree T and two nodes v, v′ ∈ T , the
following holds:

LSA(LCA(v, v′)) = LCAS(LSA(v), LSA(v′))

For a proof of this, see [11].

Using the LSA operation for leaves and Lemma 1 we are now able to calculate LSA for
inner nodes and therefore any node in T . It is easy to see that LCA(vl, vr) = v for any
node v = [vl, vr] since the suffix tree is compact. Therefore, using Lemma 1:

LSA([vl, vr]) = LSA(LCA(vl, vr)) = LCAS(LSA(vl), LSA(vr))

We introduce another Lemma that is essential for navigating the suffix tree using a δ-
sampled tree:

Lemma 2. [11] For two nodes v, v′ ∈ T , such that LCA(v, v′) 6= root, the following
holds:

slink(LCA(v, v′)) = LCA(slink(v), slink(v′))

We reproduce the proof from [11]:

Proof. We recall that each node is uniquely determined by its path label. If v = v′,
the proposition is trivially true. Otherwise, we can assume the path labels of v and v′

are α.X.β.Y and α.X.β′.Y ′ respectively with α, β, β′ ∈ Σ and β 6= β′. According to the
definition of LCA and slink, LCA(v, v′) = α.X and slink(LCA(v, v′)) = X. On the other
hand, slink(v) = X.β.Y and slink(v′) = X.β′.Y ′, so that LCA(slink(v), slink(v′)) = X.
Hence, both sides of the equation evaluate to the node with path label X.
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3.1.2 Navigation

We will now describe how to use the sampled tree to navigate the original suffix tree. We
start with the calculation of the string depth. The intuition is that since for each node v
in the suffix tree there is a node slinki(v) that is sampled, we find such a node and deduce
from its depth the depth of v itself. Therefore, we will store the depth of each sampled
node explicitly using a vector of s = |S| integers indexed by the pre-order of each node
u ∈ S. The string depth of any node is at most n. Since the string depth of sampled
nodes is a multiple of δ/2, it is sufficient to store depth(u)

δ/2 and reconstruct depth(u) by
multiplying the stored value by δ/2 . We can therefore store the depth of all sampled
nodes using s log n

δ/2 = O(n
δ

log n) bits.

The following lemma is the main lemma for the navigation using the sampled tree.

Lemma 3. [11] For two nodes v, v′ ∈ T , such that slinkr(LCA(v, v′)) = root and m =
min(δ, r + 1), the following holds:

depth(LCA(v, v′)) = max0≤i<m{i+ depth(LCAS(LSA(slinki(v)), LSA(slinki(v′))))}

Proof.

depth(w) ≥ depth(LSA(w)) (3.1)
depth(slinki(LCA(v, v′))) ≥ depth(LSA(slinki(LCA(v, v′)))) (3.2)

depth(LCA(v, v′)) ≥ i+ depth(LSA(slinki(LCA(v, v′)))) (3.3)
≥ i+ depth(LSA(LCA(slinki(v), slinki(v′)))) (3.4)
≥ i+ depth(LCAS(LSA(slinki(v)), LSA(slinki(v′)))) (3.5)

We start with Equation (3.1), which follows from the observation that for any node w, its
depth is greater or equal than the depth of any of its ancestors. Note that the inequality
becomes an equality if w is sampled, since w = LSA(w) iff w is sampled. We get Equation
(3.2) by substituting slinki(LCA(v, v′)) for w. Equation (3.3) follows directly from the
definition of slink. Finally, we apply Lemma 2 and 1 to get Equation (3.4) and (3.5)
respectively. According to the definition of the δ-sampled tree, there is a value of i < δ
such that w = slinki(LCA(v, v′)) is sampled, in which case the inequality becomes an
equality, as mentioned in the beginning of the proof. Therefore, the depth is the maximum
as defined in the proposition.

String Depth

Lemma 3 allows us to compute the depth of any node v = [vl, vr] = LCA(vl, vr). We
successively compute the series of nodes wi = LCAS(LSA(slinki(v)), LSA(slinki(v′))) for
all values of 0 ≤ i < m or until slinki(LCA(v, v′)) = LCA(slinki(v), slinki(v′)) = root.
This can be checked efficiently by checking if slinki(v) and slinki(v′) start with the same
character.

Although we cannot yet evaluate slink for inner nodes, we recall that slink(v) = ψ(v)
for leaves of the suffix tree. Since vl and vr are leaves, we can calculate slinki(vl) and
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slinki(vr) using the ψ-function of the CSA. The LSA operation is solved using the leaf
mapping and LCAS is solved using the BPS of the sampled tree.

We can also calculate the string depth of the LCA of two inner nodes by using the following
lemma:

Lemma 4. [11] For two nodes v, v′ ∈ T with v = [vl, vr] and v′ = [v′l, v′r], the following
holds:

LCA(v, v′) = LCA(min(vl, v′l),max(vr, v′r))

For a proof of this, see [11].

Using the fully-compressed suffix tree, we can solve depth in O(δ · tψ) = O(δ log σ) time.

LCA

As a by-product of the calculation of depth(LCA(v, v′)) using Lemma 3, we get one or two
values of i so that slinki(LCA(v, v′)) is sampled. These values can easily be identified,
as these are the values for which i+ depth(wi) is maximal. The sampled nodes and their
corresponding values of i are at least as important as the resulting string depth itself, as
they can be used to solve the LCA operation.

We know from the definition of LCA that v[0..d − 1] = v′[0..d − 1] = LCA(v, v′) for
d = depth(LCA(v, v′)). Therefore, we can calculate LCA(v, v′) by using backward search:

Lemma 5. [11] For two nodes v, v′ ∈ T and i ≤ depth(LCA(v, v′)), the following holds:

LCA(v, v′) = LF (v[0..i− 1], slinki(LCA(v, v′)))

The total time to solve LCA is O(δ · (tψ + tLF )) = O(δ log σ).

Suffix Link

The suffix link of a node v = [vl, vr] is calculated using Lemma 2. Again, we solve slink
for leaves using the ψ function of the CSA. LCA is then calculated using Lemma 5. The
time required to solve slink is O(δ · (tψ + tLF )) = O(δ log σ).

Parent

Using Lemma 5 we can also compute the parent of a node. Note that since the suffix tree
is compact, every inner node has at least two children. Hence, the parent of a node v
covers at least v and at least either one of the leftmost leaf right of v, or the rightmost leaf
left of v (if either of them exists). To find the parent of a node v = [vl, vr], we calculate
both LCA(v, [vl + 1, vl + 1]) and LCA(v, [vr − 1, vr − 1]), which are both ancestors of v.
In case these are different nodes, the lower one is the parent of v.

The time to calculate parent is O(δ · (tψ + tLF )) = O(δ log σ).

28



3.1 Original Proposal

Child

The last remaining operation is the child operation. It can be implemented using binary
search over the CSA. The child v.α (which we recall is short for v.α.X) of v is the
subinterval v.α = [v.αl, v.αr] of v = [vl, vr] so that the branching letter of v is α. To find
it, we use the forward search approach i.e. we compute the position d = depth(v) of the
branching letter and determine the left and right boundary of v.α using binary search.

We need O(δ · (tψ + tLF )) time to find the string depth and ttext · dlog ne to perform the
binary search. The total required time to solve child is O(δ · (tψ + tLF ) + ttext · log n) =
O((δ + log2 n) log σ). The operations first-child and next-sibling are also solved using
the child operation.

3.1.3 Construction

Using a compressed suffix tree of a text T , we can efficiently construct the fully-compressed
suffix tree in two tree traversals. In the first tree traversal we determine the set of nodes
for the δ-sampled tree. In the second traversal we create the required data structures to
represent the fully-compressed suffix tree.

During the construction the set of sampled nodes is represented by a bit vector X. The
bit X[pre-order(v)] will determine whether v will be sampled. We traverse the CST and
for every node v 6= root with depth(v) ≡ 0 (mod δ/2), we determine v′ = slinkδ/2(v) and
set the bit X[pre-order(v′)] to one.

In the second traversal, we create the BPS of the sampled tree by copying the parenthesis
of each node v with X[v] = 1. The leaf mapping and the depth sampling are constructed
accordingly.

It is sufficient to sample only inner nodes that meet the sampling conditions. Lemma 3
still holds if no leaves are sampled, since LCA(v, v′) is a leaf only if v = v′ and both v and
v′ are leaves. In this case, we can calculate LCA(v, v′) = v = v′ and depth(LCA(v, v′)) =
n− SA[v] without making use of the sampled tree.

3.1.4 Summary

We review the components of the fully-compressed suffix tree as well as their space re-
quirements. The δ-sampled tree is stored in O(n

δ
) bits, the leaf mapping in O(n

δ
log δ)

bits and the depth sampling in O(n
δ

log n
δ
) bits. In total, the fully-compressed suffix tree

requires O(n
δ

log n
δ
) bits on top of the space of the CSA.

The fully-compressed suffix tree solves the operations LCA, slink and parent in O(δ(tψ+
tLF )) time, depth in O(δ · tψ) and child in O(δ · tψ + ttext · log n) time.

By choosing δ = Ω(log n log log n), the fully-compressed suffix tree can be stored in
O( n

log logn) = o(n) bits on top of the CSA. The time for the operations LCA, slink, parent
and depth is O(log n log log n log σ). The child operation is solved in O(log2 n log σ) time7.

7We assume ttext = O(logn log σ), as provided by the CSA described in Section 2.7.
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3.2 Fully-Compressed Suffix Trees with Sparse Depth Sampling

The asymptotic space complexity of the fully-compressed suffix tree is bound by the size
of the depth sampling, which requires O(n

δ
log n

δ
) bits. Navarro and Russo [13] proposed

a way of reducing the size of the depth sampling by storing the string depth only for a
subset of the sampled nodes, reducing the asymptotic complexity of the fully-compressed
suffix tree to O(n

δ
log δ). This allows using a smaller value of δ to improve the performance

of operations that do not require access to the depth sampling, while retaining the same
space requirements.

3.2.1 Lowest Common Ancestor without Depth Sampling

In Section 3.1, we used Lemma 3 to find a sampled node slinki(v) for a node v using the
depth sampling. Navarro and Russo show that this can also be achieved without using
the depth sampling.

Lemma 6. [13] Let v, v′ be nodes such that slinkr(LCA(v, v′)) = root. Then there is an
i with 0 ≤ i < d = min(δ, r + 1) such that

LF (v[0..i− 1], LCA(LSA(slinki(v)), LSA(slinki(v′)))) = LCA(v, v′)

We reproduce the proof from [13].

Proof. We consider the sequence of nodes ui = slinki(LCA(v, v′)), which is not computed.
According to Lemma 2, ui can also be expressed as ui = LCA(slinki(v), slinki(v′)).
Comparing it with the sequence of nodes wi = LCA(LSA(slinki(v)), LSA(slinki(v′))) =
LSA(LCA(slinki(v), slinki(v′))), which is used in the lemma, shows that wi is an ancestor
of ui for any i in the interval. According to Lemma 3, there is an i in the interval such
that depth(LCA(v, v′)) = i + depth(wi) = i + depth(ui), which means that wi = ui for
an i in the interval. Therefore, LF (v[0..i − 1], wi) = LF (v[0..1 − 1], ui) = LCA(v, v′)
according to the definition of LF .

We use Lemma 6 to calculate LCA(v, v′). We compute the values of wi for all values of
i in the interval. Then, we calculate another sequence of nodes w′i with w′d−1 = wd−1 and
for 0 ≤ j < d − 1, w′i is wi or LF (v[i], w′i+1), either of which is lower. Since wi is either
an ancestor or a descendant of LF (v[i], w′i+1), determining the lower one of them can be
done only by looking at their intervals over the CSA, either of which is a subinterval of
the other. According to the proof of Lemma 6, at least one node wi is equal to ui. Since
wi is an ancestor of ui, we will choose w′i = LF (v[i], w′i+1) = LF (v[i], ui+1) = ui in all
following steps. Hence, w′0 = u0 = LCA(v, v′) is the resulting node. It is also important
to note that we can identify the node ui that is sampled (so that ui = wi), as it has the
smallest value of i so that LF (v[i], w′i+1) is an ancestor of wi.

3.2.2 Sparse Depth Sampling

Now that we can calculate LCA without using the depth sampling, we can use a sparser
depth sampling while keeping the structure of the δ-sampled tree unchanged.
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We conceptually partition the set of nodes into bands according to their string depth.
Each band contains all nodes with the same logarithm of their string depth, i.e. node v
belongs to the band of index lv = b1 + log depth(v)c (starting with index 1). The new
sampling rule is to sample the depth of a node v iff depth(v) is a multiple of δ2 lv and there
is another node v′ so that lv = lv′ and v = slink(δ/2)lv(v′).

The sampling rule guarantees that in each band l at most one out of δ
2 l nodes is sampled.

Since we can represent the string depth of a node v in band l using O(log depth(v)) = O(l)
bits, the sampling requires only O(1

δ
) bits per node in the suffix tree. The total space for

the depth sampling is O(n
δ
).

We also need a bit vector indicating for each node v ∈ S whether v is sampled or not. We
can implement this vector as a sparse bit vector (see Section 2.4.2) using O(n/δ) bits.

To find the string depth of a node v we need to follow slink at most O(δ log depth(v))
times [13], resulting in a runtime of O(δ log depth(v) · tψ).

The slink and parent and operations are implemented based on the LCA operation just
as in Section 3.1.

3.2.3 Summary

The sparse depth sampling can be stored usingO(n
δ
) bits. The δ-sampled tree still requires

O(n
δ
) bits, the leaf mapping O(n

δ
log δ) bits. In total, the fully-compressed suffix tree with

sparse depth sampling requires O(n
δ

log δ) bits on top of the space of the CSA.

The fully-compressed suffix tree with sparse depth sampling solves the operations LCA,
slink and parent in O(δ(tψ + tLF )) time, depth(v) in O(δ(tψ log depth(v)+ tLF )) time and
child in O(δ(tψ log depth(v) + tLF ) + ttext · log n) time.

By choosing δ = Ω(log log n), the fully-compressed suffix tree with sparse depth sampling
can be stored in O(n log log logn

log logn ) = o(n) bits on top of the CSA. The time for the operations
LCA, slink and parent is O(log log n log σ). Assuming depth(v) = O(log n), depth is
solved in O((log log n)2 log σ) time. The child operation is solved in O(log2 n log σ) time8.

3.3 Binary Fully-Compressed Suffix Trees

One advantage of suffix trees over suffix arrays is faster pattern matching. As each
substring of the text is represented by a node in the suffix tree (or a point on an edge
between two nodes), pattern matching is simply descending into the tree. With the
original form of the fully-compressed suffix tree, pattern matching is no more efficient
than using the CSA alone. In Section 3.1.2, we described how to implement the child
operation using the compressed suffix array, making no use of the sampled tree. In
this section, we will present a variant of the fully-compressed suffix tree that allows the
computation of the child operation using the sampled tree, resulting in a better runtime
both in theory and practice.

8Again, we assume ttext = O(logn log σ), as provided by the CSA described in Section 2.7.
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3.3.1 Child Sampling

Our approach is to extend the δ-sampling of the suffix tree (as described in Section 3.1)
to include the nodes of the children of sampled nodes. However, as each node has up
to σ children, we end up with O(σ · n/δ) sampled nodes if we sample all the children of
the originally sampled nodes. To preserve the upper bound of O(n/δ) sampled nodes we
include only some of these children. The following definition describes which nodes have
to be sampled to allow faster pattern matching.

Definition 16. A δ-sampled tree with child sampling S ′ of a suffix tree T with t nodes
is formed by choosing s = O(t/δ) nodes of T so that, for each node v of T , there is an
i < δ such that node slinki(v) is sampled and if depth(v) ≥ δ, then for every child v.α of
v, slinki(v).α is sampled.

The requirement for depth(v) ≥ δ is necessary so that the number of sampled nodes is
guaranteed to be O(n/δ). We recall that in the original δ-sampled tree, the root is always
sampled. In the child sampling, this corresponds to all the children of the root being
sampled. While sampling one additional node (the root) is feasible, we cannot afford
sampling all of its σ children. In practice, the children of the root can be calculated very
efficiently using backward search.

Note that since the subtree rooted at slinki(v′) is at least as large as the subtree rooted
at v′, slinki(v′).α is an ancestor of slinki(v′.α). See Figure 13 for an illustration of this.

v
α

X Y

β

v′
α

X
β

Figure 13: Both the nodes v′ and v = slinkδ/2(v′) have a child with branching letter α.
v.α is an ancestor of slinkδ/2(v′.α) and both may be different nodes, as this
illustration shows. The dashed lines represent slinkδ/2.

Every δ-sampled tree with child sampling is also a δ-sampled tree. Therefore, we sample
the tree by choosing the nodes according to the construction rule described in Section
3.1.1 and another O(n/δ) nodes for the child sampling.

For the child sampling we sample each child v.α of a sampled node v ∈ S if there is a
node v′ so that slinkδ/2(v′) = v and v′ has a child v′.α.

We prove that the above construction rule results in a δ-sampled tree with child sampling.

Proof. For each node v with depth(v) ≥ δ/2, there are two values of i ∈ [0, δ − 1] for
which depth(slinki(v)) ≡ 0 (mod δ/2). We will call the smaller one i0. The larger one
is i0 + δ/2. If v has a child v.α, then slinki0(v) is sampled and has a child slinki0(v).α.
Thus slinki0+δ/2(v).α is in the child sampling according to the construction rule.

We know that the number of nodes in the original sampling of the δ-sampled tree is
O(n/δ). It remains to be shown that the number of nodes in the additional child sampling
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Figure 14: The suffix tree of the string ’sannanana$’ (left) and its 4-sampled tree with
child sampling (right). Highlighted are the nodes of the suffix tree which are
in the 4-sampled tree (black border) and the nodes which are in the child
sampling (red border).

is also O(n/δ). We consider a node v that is in the original sampling and a child v.α of
v that is in the child sampling. According to the sampling condition there is a node v′
so that slinkδ/2(v′) = v and that has a child v′.α. We consider the sequence of nodes
vi = slinki(v′). Because v′ has a child v′.α, every such vi also has a child vi.α. For any
value of i ∈ [1, δ/2 − 1], the node vi is not in the original sampling because depth(vi) 6≡
0 (mod δ/2). Therefore, vi.α is not in the child sampling. So for each node in the child
sampling there are δ/2− 1 nodes which are not in the child sampling and the number of
nodes in the child sampling is s′ ≤ 1 + t/(δ/2) = O(t/δ) = O(n/δ). The total number of
sampled nodes is O(n/δ).

All the nodes in the δ-sampling and the child sampling are stored in a single sampled tree.
Figure 14 shows an example of a δ-sampled tree with child sampling. In the example, the
nodes in the original and the child sampling are disjoint. Note that in general, there can
be nodes that meet both sampling conditions.

A δ-sampled tree with child sampling can be constructed from a compressed suffix tree.
We traverse the suffix tree and find nodes v′ so that depth(v′) ≡ 0 (mod δ/2). We then
find the node v = slinkδ/2(v′) which is in the δ-sampling. To find the nodes in the
child sampling we determine for each child v′.α of v′ the child v.α, which is in the child
sampling. v.α is computed using the child operation of the CST. Hence, we need to
extract the character α from the text, which is rather inefficient.

We can eliminate this text access using an observation we made earlier in this section:
If v′.α exists, v.α is an ancestor of slinkδ/2(v′.α). Therefore, u := LF (v′[0..δ/2− 1], v.α)
is an ancestor of LF (v′[0..δ/2 − 1], slinkδ/2(v′.α)) = v′.α. Since the string depth of u is
higher than that of v′ (there is an additional character α at the end), u is a descendant
of v′. Since u is an ancestor of v′.α but a descendant of v′ and u 6= v′, we conclude that
u = v′.α. Note that u = LF (v′[0..δ/2 − 1], v.α) may refer to an empty interval. This is
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the case if v′[0..δ/2− 1].v.α = v′.α is not a substring of the text and therefore not a suffix
tree node.

This means that we can find each child v.α of v and sample it if u = LF (v′[0..δ/2−1], v.α)
exists (i.e. does not result in an empty interval over the CSA) without the need to extract
character α.

Using the δ-sampled tree with child sampling we can implement the child operation as
follows. If depth(v) < δ, we calculate child(v, α) using backward search. If depth(v) ≥ δ,
there is a value of i such that v′ = slinki(v) and slinki(v).α are sampled, which we find
using Lemma 3. To find v′.α, we iterate over all the children of v′ and check whether the
corresponding branching letter is α. Finally, we use backward search to find child(v, α) =
LF (v[0..i− 1], slinki(v).α).

The time to compute child using the δ-sampled tree with child sampling is 2δ(tψ + tLF ) +
σ · ttext. This is poor for large alphabets, since iterating all the children is very expensive.
Also, accessing the text by itself is very expensive, even for small alphabets.

3.3.2 Binary Suffix Trees

In order to avoid checking the branching letter for each child of a node, we propose using a
variation of the suffix tree which contains the binary representation of the suffixes. In such
a tree, every inner node has exactly two children with edge labels 0 and 1 respectively.
Therefore, we can perform a blind search, i.e. find a path with a given label without the
need to extract the text to determine the edge labels. This blind search is inspired by the
blind trie9 proposed in [27].

We denote by bin(s) the binary representation of a string s. Note that we assume a
compact alphabet i.e. the alphabet consists only of characters that occur in the text. For
instance, to encode the string s = ’nasa$’, we use the alphabet Σ = {$, a, n, s}, so that
bin(s) = 10 01 11 01 00. See Table 1 for the encoding of each character in the alphabet.

Character Binary encoding
$ 00
a 01
n 10
s 11

Table 1: The binary encoding of each character in the alphabet Σ = {$, a, n, s}.

Definition 17. The binary suffix tree B of a text T is the compact trie of the binary
representation of all the suffixes in T .

Note that in general, the binary suffix tree of T is different from the suffix tree of bin(T ),
as the former contains only a subset of all suffixes of bin(T ). Figure 15 shows an example
of a binary suffix tree.

The suffix tree T of a text T and the binary suffix tree B of the same text are similar to
each other. B has the same number of leaves and at least as many inner nodes as T , but
in contrary to T , B is always a binary tree.

9The blind trie is called Patricia Trie in the original paper (see [27]) but is commonly referenced as
blind trie.
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Figure 15: The suffix tree of the string ’nasa$’ (left) and the corresponding binary suffix
tree (right).

For each inner node v in T with degree m, there are m−1 nodes in B. They are identified
by their edge labels, which are prefixed by bin(v), but not by bin(v′) for any descendant
v′ 6= v of v. For example, in Figure 15 the nodes corresponding to v0 in T are b0, b1 and
b3 in B, while v1 corresponds only to b2. We will now formalize this node correspondence.

For each node v ∈ T we denote by C(v) all corresponding nodes b ∈ B and by c(v) the
representative node for v, which is the corresponding node of v that has the smallest string
depth.

C(v) := {b ∈ B | bin(v) is a prefix of b ∧ bdepthB(b)/dlog σec = depthT (v)}
c(v) := argmin

b∈C(v)
depthB(b)

A node v and its representative c(v) share common properties. For example, the leaves
rooted in the subtree of v are the same as in the subtree of c(v). Therefore, they can
be represented by the same interval over the CSA. In the following, we will refer to v
and b(v) indifferently. On the other hand, we will refer to the nodes in B that are not a
representative node of any node in T as pseudo nodes.

We will now explain how we can navigate from a node v to a child v.α in the binary
suffix tree using blind search. We start at node b = c(v). In each step, we choose one
of the children of b according to the bit at position depthB(b) mod dlog σe of bin(α). We
continue this process with the new node until we find a node that is not a pseudo node.
The resulting node is v.α, if it exists.

For example in Figure 15, assume we want to navigate from v0 = b0 to v0.a = v1 = b2 using
blind search. We recall that bin(a) = 01. Because depth(b0) ≡ 0 (mod dlog σe), we look at
the first bit of bin(a), which is 0. Hence, we choose the left child of b0, which is b1. Since
b1 is a pseudo node, we continue the process with b1. Since depth(b0) ≡ 1 (mod dlog σe),
we look at the second bit of bin(a), which is 1. Hence, we choose the right child of b1,
which is b2. Since b2 is not a pseudo node, the result of the blind search is b2.

B can be represented by a balanced parentheses sequence (see Section 2.6) using 2(2n−
1) = O(n) bits. We can extend B to a fully-functional compressed suffix tree by adding a
CSA and a compressed LCP array (see Section 2.8). However, we cannot afford spending
O(n) bits of extra space for the fully-compressed suffix tree.
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3.3.3 Sampled Binary Trees

To reduce the space requirements, we propose a sampled binary tree. The basic idea is
to use the δ-sampled tree with child sampling from Section 3.3.1 and add just enough
nodes from the binary suffix tree so that each node in the resulting tree has at most two
children and we can perform blind search in the sampled tree.

Note that the binary suffix tree may contain nodes with only one child. For example,
consider an arbitrary sampling in which b0 and b2 are sampled in the binary suffix tree in
Figure 15. In the resulting sampled tree, b0 has only one child b2.

There are multiple ways to add nodes from the binary suffix tree so that no node in
the sampled binary tree has more than two children. For example, consider we want to
sample b0, the root, and the three leaves l1, l2 and l3 in the binary suffix tree in Figure
15. Sampling only these nodes results in b0 having three children in the resulting tree.
By additionally sampling either b1 or b2, the resulting tree becomes a binary tree. If we
choose to sample b1, both l1 and l2 are in the right branch of b1, which has the edge
label 1. This means that both nodes have the same path label in the resulting sampled
tree, which is a problem if we want to perform blind search. So instead, we choose to
sample b2, the lowest common ancestor of l1 and l2, which ensures that both nodes can
be distinguished by the branching letter of the corresponding parent node.

Definition 18. The δ-sampled binary tree Sbin of a δ-sampled tree with child sampling
S ′ and a binary suffix tree B of the same text is formed by choosing the corresponding
node c(v) for every node v ∈ S ′ and O(n/δ) additional nodes from B so that all nodes in
Sbin have degree two or less and if the degree of any node v is two, both children of v in
Sbin are in subtrees rooted at different children of v in B.

Figure 16 shows an example of a δ-sampled binary tree.
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Figure 16: The 4-sampled binary tree of the string ’sannanana$’. The corresponding suffix
tree is shown in Figure 14. The nodes of the suffix tree which are in the 4-
sampled tree are shown with a black border, while the nodes which are in the
child sampling are shown with a red border. Nodes that are added to compose
the binary tree are shown with a blue border.

Algorithm 2 shows how to construct a δ-sampled binary tree from a binary suffix tree and
a δ-sampled tree with child sampling. Note that this separation into different trees is only
conceptual. In practice, only a single binary suffix tree and a bit vector, which marks the
nodes that comprise the δ-sampled tree with child sampling, are used. The binary suffix
tree can be implemented in such a way that both the binary tree operations as well as
the original suffix tree operations are supported.
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Algorithm 2: Construction of a δ-sampled binary tree.
Input: A binary suffix tree B and a δ-sampled tree with child sampling S ′ of the same

text.
Output: A δ-sampled binary tree Sbin

1 Algorithm construct()
2 global stack: Stack
3 global Sbin ← {}
4 stack.push(0)
5 visit (root)
6 stack.pop()
7 return Sbin
8 Procedure visit(v)
9 stack.push(0)

10 foreach child w of v do
11 visit (w)
12 if v ∈ S ′ ∨ stack.top = 2 then
13 Sbin ← Sbin ∪ {v}
14 stack.pop()
15 stack.top← stack.top+ 1
16 else if stack.top = 1 then
17 stack.pop()
18 stack.top← stack.top+ 1
19 else
20 stack.pop()

Note that since each node in B has only two children and each child increases the value
in the stack by at most one, all the values in the stack in Algorithm 2 are either 0 or 1,
except for the top of the stack, which can be 2. Therefore, we can implement the stack
using only one bit per entry and an additional bit for the top value.

Before we prove the correctness of Algorithm 2, we introduce some additional terminology.

Definition 19. Let v′ be a sampled node and v ∈ B. We call v′ a bare node of v if v′ is
a descendant of v and there is no sampled node v′′ 6= v′ so that v′′ is a descendant of v
and an ancestor of v′.

In particular, if a node v is sampled it is a bare node of itself and it is the only bare node
of itself.

For example, in Figure 17, before the sampling step, node b0 has three bare nodes: b2,
b5 and b6. After the step, b4 is sampled and the bare nodes in b0 are b2 and b4. Also
note that the stack stores the current number of bare nodes in each node v ∈ B for which
visitation has started and not yet finished.

Lemma 7. After any node v ∈ B has been visited, v has at most one bare node.

Proof. Proof by structural induction. If v is a leaf, the proposition is trivially true. If
v is an inner node, both its children have been visited, since we perform a post-order
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b0
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b2 b3

b4

b5 b6
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b5 b6

Figure 17: Part of the binary tree before (left) and after (right) a step in an exemplary
execution of Algorithm 2. The nodes that are in the resulting sampled tree are
have a solid border, the remaining nodes have a dashed border.

traversal of the tree. Therefore, both children have at most one bare node according to
the premise. If they both have a bare node, v is added to the sampled tree (Line 13) and
v itself is now the only bare node of v.

Lemma 8. Algorithm 2 returns a δ-sampled binary tree.

Proof. The nodes are visited in post-order, i.e. after every child of a node v has been
visited, the choice whether v is added to Sbin is made.

Since each node v ∈ B has at most two children and according to Lemma 7 both of them
have at most one bare node after the algorithm finishes and all nodes have been visited
at that point, the degree of v in the sampled tree is at most two. Also, if the degree is
two, both children are descendants of different children of v in B.

To prove that the number of additional nodes is O(n/δ), we take a look at the state of
the tree S ′∪Sbin during the execution of the algorithm. When the algorithm finishes, this
tree is equivalent to the final δ-sampled binary tree. We call a node v an additional node
if v ∈ Sbin ∧ v /∈ S ′.

Let s = |S ′| be the number of nodes in the δ-sampled tree with child sampling. Since
each node (apart from the root) is the child of exactly one node, the sum of the degrees
of all nodes in S ′ is s− 1. Sampling a node v ∈ S ′ does not modify the tree S ′ ∪ Sbin, so
we can ignore it. If there are two bare nodes in a node v that is not in S ′, v is sampled as
an additional node (Line 12) and S ′ ∪Sbin is modified. After the modification, the parent
v′ of v in S ′ ∪ Sbin has two fewer children (which are now children of v) and v becomes
a child of v′. If v′ had degree m before the modification, it has degree m− 1 afterwards.
The new node v has degree 2. The degree of v is not changed in any later step, since all
its children have been visited. The sum of the degree of all nodes which can still change
decreases by one with each additional node. Hence, at most s − 1 additional nodes are
added to S ′ ∪ Sbin.

We represent the δ-sampled binary tree using a CSA and the following data structures:

• Sbin The balanced parentheses representation (Section 2.6) of the δ-sampled binary
tree.

• Bbin The leaf mapping for Sbin represented by a sparse bit vector (Section 2.4.2).

• Dbin The string depth of each node in Sbin (mod dlog σe).

38



3.3 Binary Fully-Compressed Suffix Trees

• MT A bit vector that stores for each node v in Sbin whether v is a node in the suffix
tree (1) or a pseudo node (0).

• S The balanced parentheses representation (Section 2.6) of the original δ-sampled
tree.

• MS A bit vector storing for each parenthesis in Sbin whether the parenthesis is also
in S (1) or not (0).

• The string depth for each node in S.

An example of the representation is shown in Figure 18.

Storing the string depth for all nodes in Sbin is not beneficial for the runtime of the
navigation operations, since we still have to follow δ suffix links to be sure to find a
sampled node. Hence, it is sufficient (and more space efficient) to store the string depth
only for nodes in S. The bit vector MS is used to map positions in Sbin to positions in S
and vice versa.

T_bin: (((0)((1)(((2)(3))(4))))((((5)((6)(7)))(8))(9)))

D_bin: 010 00 00 0 000 0 0
S_bin: ((( )(( ) (( )( )) )) ((( )( ))( )) )
B_bin: 111011101 11011011 0 11 111011 0 0 111011 0 1
M_T: 101 11 11 1 111 1 1
S: ( ( ) ( )( ) ( )( ) )
M_S: 100 001 1 01 11 10 00 010 00 011 10 1

Figure 18: The succinct representation of the sampled binary tree (bottom) seen in Figure
16 and its corresponding binary suffix tree (top). The numbers in Tbin are just
for illustration purposes and not part of the representation.

3.3.4 Navigation

Lowest Sampled Ancestor

To solve basic navigation operations using Lemma 3, we need to compute the lowest
sampled ancestor in S of any node v, since the string depth is only stored for nodes in S.

The calculation of LSAS for leaves is analog to the calculation in the original proposal
(see Section 3.1) with a small difference: Since Bbin maps the leaves in the suffix tree to
positions in Sbin, we need an additional step to calculate LSAS.

Again, we start by defining an auxiliary function predbin(v), which gives the position of
the last parenthesis in Sbin preceding leaf v:

predbin(v) = rank1(select0(v + 1, Bbin), Bbin)− 1
= select0(v + 1, Bbin)− v − 1

In the next step, we calculate the position of the last parenthesis in S preceding leaf v
by using MS to map the position of predbin(v) to the corresponding position in S. If
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MS[v] = 1, the node represented by the parenthesis at position predbin(v) in Sbin is also in
S. If MS[v] = 0, we use the parenthesis in S that is preceding the parenthesis at position
predbin(v) in Sbin:

predS(v) =
rank1(predbin(v),MS) if MS[predbin(v)] = 1’(’
rank1(predbin(v),MS)− 1 else

predS(v) can also be formulated without the case distinction:

predS(v) = rank1(predbin(v),MS) +MS[predbin(v)]− 1

Using predS, we can calculate LSAS in the same way as in the original proposal:

LSAS(v) =
predS(v) if S[predS(v)] = ’(’
encloseS(find-open(predS(v))) else

LSA for inner nodes is solved using Lemma 1 as in the original proposal.

Child Operation

To determine the child v.α of a node v, we need to find a node v′ = slinki(v) so that
v′.α is sampled. If depth(v) ≥ δ, there is at least one such node with i < δ according
to the definition of the sampled binary tree and the node we are looking for is v.α =
LF (v[0..i− 1], v′.α). If depth(v) < δ, we calculate v.α via backward search.

We find the sampled node v′ = slinki(v) using Lemma 3. To make use of this lemma, we
require the depth of slinki(v). Therefore, it is necessary for the node to be sampled not
only in Sbin but also in S. There are at least one and at most two such nodes for i < δ.
Assume slinki(v) is sampled for i0 and i0+δ/2 and node v has a child v.α. Then slinki0(v)
has a child slinki0(v).α and slinki0+δ/2(v).α is sampled according to the definition of the
sampled binary tree. The same is valid for slinki(v).α in case there is only one value of
i < δ so that slinki(v) is sampled.

We find v′.α using blind search by traversing the subtree rooted at v′, at each step choosing
the left or right node according to the bit in α at the position indicated by Dbin. We are
done when we arrive at a node v′′ that is not a pseudo node, which is determined by
looking up MT [pre-order(v′′)].

Finally, we need to check whether v.α[d] = α, where d = depth(v). If this is not the case,
v.α does not exist.

In the worst case, we need δ − 1 applications of ψ to find the sampled node v′ and its
string depth, log σ steps to perform blind search to find v′.α, δ− 1 applications of LF for
the backward search and one text access for the final check. In total, the time complexity
for child is O(δ(tψ + tLF ) + log σ + ttext).
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3.3.5 Summary

The δ-sampled tree is stored inO(n
δ
) bits, the leaf mapping inO(n

δ
log δ) bits and the depth

sampling in O(n
δ

log n
δ
) bits. We also store the binary depth (Dbin) using O(n

δ
log log σ) =

O(n
δ

log log n) bits10. The remaining data structures (MT , S, MS) require O(n
δ
) space. In

total, the binary fully-compressed suffix tree requires O(n
δ

log n
δ
) bits on top of the space

of the CSA.

The binary fully-compressed suffix tree solves the operations LCA, slink and parent in
O(δ(tψ + tLF )) time, depth in O(δ · tψ) and child in O(δ(tψ + tLF ) + log σ + ttext) time.

By choosing δ = Ω(log n log log n), the fully-compressed suffix tree can be stored in
O( n

log logn) = o(n) bits on top of the CSA. The time for the operations LCA, slink,
parent, depth and child is O(log n log log n log σ).

Assuming σ = O(polylog(n)), we can use the FM-index of Ferragina et al. [28] as our
underlying CSA and δ = Ω(log n log log n). The FCST requires O( n

log logn) = o(n) bits on
top of the CSA and solves LCA, slink, parent, depth and child in O(log n log log n) time.
This improves the theoretical result of Russo et al. [11].

4 Experimental Evaluation

In this section, we will conduct an experimental evaluation of the data structures we
implemented. We start off by describing our implementation and the experimental setup.
We then examine the size of the indexes our implementation produces, the performance
of individual queries and finally the time required for index construction.

4.1 Implementation

Our implementation is based on the Succinct Data Structure Library (SDSL) [12]. The
SDSL is a C++ library that provides a variety of data structures, including compressed
suffix trees, compressed suffix arrays, wavelet trees, bit vectors and integer vectors. In
particular, the succinct and compact data structures we introduced in Section 2 are im-
plemented in the SDSL. All SDSL data structures are implemented as template classes,
allowing easy composition and configuration.

Our implementation of the fully-compressed suffix tree can be parametrized with different
δs, compressed suffix arrays, balanced parentheses sequences, bit vectors for the leaf
mapping and integer vectors for the depth sampling. Input text over byte as well as
integer sequences can be processed by our implementation.

10By using a compact alphabet (an alphabet that contains only characters that occur in the text), we
can ensure that σ ≤ n.
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4.2 Experimental Setup

We will compare implementations of the following three variants of fully-compressed suffix
trees:

• cst_fully The original fully-compressed suffix tree (see Section 3.1).

• cst_fully_sds The fully-compressed suffix tree with sparse depth sampling (see
Section 3.2).

• cst_fully_blind The binary fully-compressed suffix tree that uses blind search
(see Section 3.3).

For reference, we will also show results for the following data structures:

• cst_russo The fully-compressed suffix tree implementation by Russo et al.[11].

• cst_sada The compressed suffix tree by Sadakane (see Section 2.8).

• csa_wt The compressed suffix array based on the FM-index (see Section 2.7). The
exact type of the data structure in the SDSL is csa_wt<wt_huff<rrr_vector<63>
>, 32, 32, text_order_sa_sampling<>, text_order_isa_sampling_support<>
>. Both the fully-compressed suffix tree and the compressed suffix tree use this data
structure as their underlying CSA.

The evaluation was performed on an Intel Xeon E5-4640 CPU @ 2.40 GHz. The code
was compiled using g++ 4.8.1 and compiler flags -O3 -ffast-math -funroll-loops
-msse4.2.

To evaluate the data structures, we use the text collection from the Pizza&Chili corpus11.
If not stated otherwise, we use a prefix of length 100MB for each text. If the file is smaller
than 100MB we used the complete text.

The text collection contains the following files12:

• Sources (source program code) This file is formed by C/Java source code obtained
by concatenating all the .c, .h, .C and .java files of the linux-2.6.11.6 and gcc-4.0.0
distributions.

• Pitches (MIDI pitch values) This file is a sequence of pitch values (bytes in 0-127,
plus a few extra special values) obtained from a myriad of MIDI files freely available
on Internet. The MIDI files were processed using semex 1.29 tool by Kjell Lemstrom,
so as to convert them to IRP format. This is a human-readable tuple format, where
the 5th column is the pitch value. Then the pitch values were coded in one byte
each and concatenated.

• Proteins (protein sequences) This file is a sequence of newline-separated protein
sequences (without descriptions, just the bare proteins) obtained from the Swissprot
database. Each of the 20 amino acids is coded as one uppercase letter.

• DNA (gene DNA sequences) This file is a sequence of newline-separated gene DNA
sequences (without descriptions, just the bare DNA code) obtained from files 01hgp10
to 21hgp10, plus 0xhgp10 and 0yhgp10, from Gutenberg Project. Each of the 4 bases

11http://pizzachili.dcc.uchile.cl/texts.html
12The description is taken from http://pizzachili.dcc.uchile.cl/texts.html
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4.3 Index Size

is coded as an uppercase letter A,G,C,T, and there are a few occurrences of other
special characters.

• English (English texts) This file is the concatenation of English text files selected
from etext02 to etext05 collections of Gutenberg Project. We deleted the headers
related to the project so as to leave just the real text.

• XML (structured text) This file is an XML that provides bibliographic information on
major computer science journals and proceedings and it is obtained from dblp.uni-
trier.de.

We also use the file Einstein from the repetitive corpus from Pizza&Chili13. It consists of
all versions of the article of Albert Einstein in the German Wikipedia up to January 12,
2010.

The last file we use is WikiInt, which contains an excerpt of the English Wikipedia. In
this text, the alphabet consists of words instead of letters resulting in a larger alphabet
than the texts from the Pizza&Chili corpus.

4.3 Index Size

We constructed the fully-compressed suffix trees for the texts described earlier with the
sampling parameter δ = dlog nedlog log ne. Table 2 shows the space requirements of the
data structures and related information for each text.

DNA English Pitches Proteins Sources XML Einstein WikiInt
σ 17 216 134 26 228 97 118 281577
n/220 100.0 100.0 53.2 100.0 100.0 100.0 88.5 12.2
|T |/220 167.4 161.7 87.5 155.6 162.7 147.4 175.2 14.8
|S| 13,683 312,720 164,779 249,798 123,014 73,980 1,350,024 84
δ 135 135 130 135 135 135 135 120
|T |/|S| 12,830 542 557 653 1,387 2,089 136 185,077
cst_fully [MB] 37.34 42.41 31.96 63.69 41.04 30.58 24.32 18.52
cst_fully_sds [MB] 37.33 42.07 31.84 63.50 40.95 30.55 22,47 18.52
cst_fully_blind [MB] 37.55 45.51 33.65 66.25 42.51 32.18 35,29 18.53
cst_russo [MB] 56.57 70.84 43.98 75.79 65.40 54.42 58.92 n/a
cst_sada [MB] 124.08 126.05 77.01 145.68 125.77 110.45 104.92 27.23
csa_wt [MB] 37.28 41.16 31.37 62.79 40.55 30.29 19.22 18.52
csa_wt/cst_fully 0.998 0.971 0.981 0.986 0.988 0.990 0.790 1.000

Table 2: Space requirements of fully-compressed suffix trees with δ = dlog nedlog log ne.
Statistics such as the number of nodes in the suffix tree |T | and the sampled
tree |S| are also shown for each test case. Note that since the implementation
of Russo et al. does not support integer alphabets, WikiInt was not tested with
their implementation.

The total space consumption of cst_fully is smaller than the space consumption of the
prototype by Russo et al. for every test case. One reason for this is the smaller size of the
underlying CSA. Another reason is the succinct representation of the tree in cst_fully,
as opposed to cst_russo, which uses a pointer-based implementation. The extra space
required by cst_fully is less than 3 percent the size of the CSA for the texts from the
13http://pizzachili.dcc.uchile.cl/repcorpus.html
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Pizza&Chili corpus, whereas cst_russo requires up to 13 percent the size of the CSA
(see [11]) for these texts.

The line |T |/|S| shows the ratio of the number of nodes in the suffix tree to the number
of nodes in the sampled tree. While this ratio cannot be lower than δ/2 (or even δ, since
leaves are not sampled in our implementation) due to the property of the sampling, we
observe that the values are much larger in practice (except for Einstein). This is especially
the case if the nodes in the suffix tree are very close to the root and few nodes have a
string depth large enough to satisfy the sampling condition. Note that for the highly
repetitive text Einstein, the value of |T |/|S| is very close to δ.
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Figure 19: Distribution of the string depth of all inner nodes of the suffix tree for English,
DNA, Einstein and WikiInt. The y-axis shows the ratio of inner nodes having
a smaller depth than d to the total number of inner nodes in the suffix tree of
the corresponding text.

The distribution of depth in the suffix tree highly depends on the type of text. While DNA,
which is an excerpt of the human genome, bears resemblance with random data and longer
repetitions are exceedingly unlikely, English contains a lot of redundancy and repetitions
of words, phrases or even whole texts. Einstein is highly repetitive and contains a larger
portion of suffix tree nodes with high string depths. Figure 19 shows the distribution
of the string depth of the inner nodes in the suffix tree for English, DNA, Einstein and
WikiInt.

We will now take a more in-depth look at the space requirements of the data structures
for different values of the sampling parameter δ. We start by reviewing the theoretical
space complexities of the data structures (see Table 3).

cst_fully cst_fully_sds cst_fully_blind
Balanced parentheses n/δ n/δ n/δ
Leaf mapping n/δ log δ n/δ log δ n/δ log δ
Depth sampling n/δ log(n/δ) n/δ n/δ log(n/δ)
Binary depth 0 0 n/δ log log σ
Total n/δ log(n/δ) n/δ log δ n/δ log(n/δ)

Table 3: Space complexities of the components of fully-compressed suffix trees (excluding
the CSA). All entries are O(·).
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The complexity of the extra space (on top of the CSA) of the original version of the
fully-compressed suffix tree (cst_fully) is dominated by the depth sampling (assuming
δ ≤
√
n). The fully-compressed suffix tree with sparse depth sampling (cst_fully_sds)

requires only O(n/δ) bits for the depth sampling, hence its extra space is dominated by
the leaf mapping. The blind fully-compressed suffix tree (cst_fully_blind) additionally
stores the binary depth of each sampled node. Its extra space complexity is the same as
that of cst_fully.

What is not represented in the asymptotic complexity is the constant factor. Assuming
there are s sampled nodes in cst_fully, in cst_fully_blind there are about s additional
nodes in the child sampling. In the process of making the sampled tree a binary tree,
further nodes are added to the sampled tree, so that in total about 4s nodes are in the
binary sampled tree. Therefore, the balanced parentheses representation and the leaf
sampling of cst_fully_blind require about 4 times as much space as their counterparts
in cst_fully.
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Figure 20: Space requirements of fully-compressed suffix trees for different values of δ and
English and DNA. The space required for the CSA is not included.

We built the three variants of the fully-compressed suffix tree for English and DNA for
different values of δ. Figure 20 shows their space requirements. As the value on the y-axis
shows the space divided by n/δ, theory suggests we find a logarithmic curve. Instead,
the space requirement per n/δ decreases with increasing δ. This is because the number
of nodes satisfying the sampling condition decreases.

The extra space consumption of cst_fully_blind is about 4 times as high as that of
cst_fully, as expected. The extra space of cst_fully_sds is only marginally smaller
than cst_fully, especially for larger values of δ. To see why this is the case, we take a
look at the space consumption of the individual components of the FCST.

Figure 21 shows the space consumption of each individual component of cst_fully for
different values of δ. For the leaf mapping, we expect a value of log δ bits per sampled
node, which is between 2 and 7 bits for the 100 MB of English. In practice, we see values
between 10 and 20 bits per sampled node. One reason for this is that the actual number
of sampled nodes is much less than n

δ/2 (see Table 2), so that the distance between two
one bits in the leaf sampling is higher and it requires more space per sampled node (but
less overall space). For the depth sampling, we expect log n

δ
bits per sampled node, which
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Figure 21: Space consumption per sampled node for the individual components of
cst_fully for English and different values of δ.

is between 20 and 25 bits for the 100 MB of English. Additional overhead is introduced
due to the way the depth sampling is stored14. Our results show that the depth sampling
requires only about 10 bits per sampled node. This is because n is a very pessimistic
upper bound for the string depth of a node and most nodes have a very small string
depth in practice, as we have seen in Figure 19.

The small space consumption of the depth sampling is the reason why the space saved by
using the sparser depth sampling of cst_fully_sds is very small in practice.

4.4 Query Time

We will now evaluate the query times of our implementation. We start by reviewing the
theoretical time complexities of the data structures, which are shown in Table 4.

Operation cst_fully cst_fully_sds cst_fully_blind
root 1 1 1
is-leaf(v) 1 1 1
parent(v) δ(tψ + tLF ) δ(tψ + tLF ) δ(tψ + tLF )
child(v, c) δ · tψ + ttext log n δ(tψ log depth(v) + tLF ) + ttext log n δ · tψ + log σ + ttext
first-child(v) δ · tψ + ttext log n δ(tψ log depth(v) + tLF ) + ttext log n δ · tψ + log σ + ttext
next-sibling(v) δ · tψ + ttext log n δ(tψ log depth(v) + tLF ) + ttext log n δ · tψ + log σ + ttext
letter(v, d) ttext ttext ttext
slink(v) δ(tψ + tLF ) δ(tψ + tLF ) δ(tψ + tLF )
LCA(v, w) δ(tψ + tLF ) δ(tψ + tLF ) δ(tψ + tLF )
depth(v) δ · tψ δ(tψ log depth(v) + tLF ) δ · tψ

Table 4: Time complexities of the different variants of the fully-compressed suffix tree.
All entries are O(·).

14In our evaluation, the SDSL type dac_vector<> is used to store the depth sampling.
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root and is-leaf are simple operations on the fully-compressed suffix tree, which are
computed in constant time. first-child and next-sibling are not very interesting, as
they are computationally equivalent to child (with an additional call to letter). letter
is implemented only by CSA operations and is therefore independent of the sampled
tree. We still include it for reference purposes. We will concentrate on the following six
operations: parent, child, letter, slink, LCA and depth.

We evaluate each operation by computing it 10,000 times with different arguments chosen
at random, measuring the average execution time.

Each operation takes a node as an argument, while some require additional arguments.
The node is chosen in the following way: We choose a random leaf u = [u, u] by choosing
u uniformly from the interval [0, n−2] and calculate v = LCA([u, u], [u+1, u+1]), which
yields any inner node v with a probability deg(v)−1

n−1 , where deg(v) is the degree of node v.

For the evaluation of the child-operation, we need a character c for each evaluation of
child(v, c). We choose a leaf u uniformly from all the leaves rooted in v and choose c as
the first character on the label from v to u.

For the LCA operation, we need a pair of nodes. Choosing two nodes v and v′ indepen-
dently causes LCA(v, v′) to be root most of the time. Hence, we choose a random inner
node v using the method described above. We then choose two leaves v, v′ uniformly from
the leaves in the subtree rooted at v. This ensures that LCA(v, v′) is a descendant of v.

Evaluating parent(v) for a uniformly chosen node v often yields nodes that are near the
root of the tree, which are particularly easy to compute given the structure of the fully-
compressed suffix tree. So instead, we choose a random child v′ of a uniformly chosen
node v, so that we know that v = parent(v′) is uniformly distributed.

For the letter operation and an inner node v 6= root, we choose d = depth(v), the last
letter of the path-label from root to v.

Table 5 shows the query times of our implementation in comparison with both the im-
plementation of Russo et al. and the compressed suffix tree by Sadakane. Our imple-
mentation is faster for all operations (except letter) by a factor of 3 to 9. Note that the
arguments chosen to evaluate the operations in the implementation of Russo et al. are
different in some cases. For instance, their benchmark for the letter operation retrieves
the first letter of the path label of a node v, which is particularly easy to compute, while
our implementation retrieves the last letter, which requires applying ψi.

Figures 22, 23, 24, 25 and 26 show the query times for English (100 MB), DNA (100 MB),
WikiInt, English (2.2 GB) and Einstein respectively.

The graph showing the execution time for the LCA operation is not linear, as theory
suggests. Instead, the graph becomes more flat with increasing δ. This is because many
nodes in the suffix tree are close to the root. The time required to calculate the string
depth for a node v with depth(v) = d is the same for any δ > 2d, since in this case
slinkd(v) = root is the only sampled node in the suffix link sequence of v. Also note that
LCA is slightly slower for cst_fully_sds, since Lemma 6 is used instead of Lemma 3,
which potentially uses more applications of LF . The parent operation takes about twice
the time to compute as the LCA operation.

The depth-operation is much slower for cst_fully_sds than for the other variants. The
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Figure 22: Query times for English and different values of δ.
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Figure 23: Query times for DNA and different values of δ.
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Figure 24: Query times for WikiInt and different values of δ.
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Figure 25: Query times for English (2.2 GB) and different values of δ.
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Figure 26: Query times for Einstein and different values of δ.
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Figure 27: Query times and space consumption for English and δ = 4, 8, 16, 32, 64 and
128. The query time and size of cst_sada is included for reference. The line
labeled CSA shows the size of the compressed suffix array, which is a lower
bound of the size of the FCST. Results with very large index size or query
time are omitted (they are outside the range shown here).
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Operation DNA English Pitches Proteins Sources XML Einstein
LCA cst_fully 96.38 296.51 356.83 319.56 298.33 347.12 859.62

cst_russo 726.12 2093.07 2613.58 1610.44 2344.94 3234.85 7043.08
cst_sada 0.19 0.27 0.35 0.28 0.30 0.26 0.20

letter cst_fully 20.96 45.41 52.95 42.88 56.85 51.62 32.28
cst_russo 2.82 3.96 4.97 3.69 4.98 4.97 4.30
cst_sada 22.12 47.20 53.28 44.66 57.72 51.49 31.32

slink cst_fully 123.35 404.97 473.77 380.55 368.35 422.50 1173.24
cst_russo 704.08 2085.43 2620.89 1590.20 2307.60 3207.01 7079.65
cst_sada 4.25 7.58 9.94 8.50 8.89 6.38 5.25

child cst_fully 214.69 587.36 669.53 561.15 617.45 685.70 1316.67
cst_russo 586.01 1791.79 2173.83 1363.05 1857.30 2473.21 6193.61
cst_sada 74.42 155.55 176.91 161.77 181.10 182.97 57.06

depth cst_fully 102.20 366.15 398.49 342.39 329.13 380.07 1134.73
cst_russo 583.44 1805.27 2148.23 1361.62 1880.76 2472.39 6166.50
cst_sada 31.44 43.13 58.11 60.37 42.54 26.18 15.49

parent cst_fully 233.29 550.28 672.33 601.28 604.06 804.09 2309.25
cst_russo 1191.47 1425.04 2700.27 1829.66 2804.99 5057.32 13574.66
cst_sada 0.14 0.20 0.20 0.20 0.19 0.18 0.10

Table 5: Query times of our fully-compressed suffix tree implementation (cst_fully) with
δ = dlog nedlog log ne, the implementation of Russo et al. (cst_russo) using the
same value of δ and the compressed suffix tree by Sadakane (cst_sada). All
values are in microseconds.

average string depth of inner nodes in test case English is about 5000, so we would expect
a slowdown of factor 12 caused by the final step in which the node which is in the depth
sampling is determined. We can see in Figure 22 that the slowdown factor is only about
3, independent of the value of δ. This discrepancy is again due to the fact that most of
the nodes are close to the root.

The child operation is fastest for cst_fully_blind for every text and every value of δ.
The time improvement is especially large for small values of δ. To see why this is the case,
we recall that for cst_fully and cst_fully_sds child is implemented by a binary search
and a call to depth to determine the branching letter. While the former is potentially
time consuming, it does not depend on the sampled tree and is therefore independent of
δ. The child operation of cst_fully_blind benefits from smaller values of δ to a greater
extent. This also explains why cst_fully_sds, which has a slow depth operation, is also
very slow for child.

The graphs for DNA (Figure 23) look similar to those for English (Figure 22) for small
values of δ. For larger values, there is no noticeable increase in time, as the suffix tree for
this text has very few nodes with high string depths (see Figure 19). For WikiInt (Figure
24), this is even more extreme and the time is almost the same for any value of δ ≥ 8.

The execution times for English (2.2 GB, Figure 25) are by a factor of about 1.9 slower
than the operations on English (100 MB, Figure 22). This is mainly due to caching effects,
since the index is larger and a smaller proportion of it can be stored in the cache.

The execution times of the operations LCA, parent and slink for Einstein are almost
perfectly linear with δ. Since the text is highly repetitive, most of the nodes have a high
string depth and we have to perform the full δ steps to calculate LCA.

Figure 27 shows time-space trade-offs for English (100 MB) for different values of δ.
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cst_fully provides a very good overall performance. cst_fully_sds is marginally better
for LCA, parent and slink but significantly worse for depth and child. cst_fully_blind
is slightly better for child but worse for the remaining operations. This shows that values
of δ < dlog nedlog log ne provide very interesting trade-offs in practice.

4.5 Construction Time

We will now evaluate the construction time of our implementation.

Index DNA English Pitches Proteins Sources XML Einstein
cst_fully 157 209 121 226 183 178 225
cst_russo 774 4246 579 1416 1731 926 60098

Table 6: Construction time of our fully-compressed suffix tree implementation
(cst_fully) with δ = dlog nedlog log ne and the implementation of Russo et
al. (cst_russo) using the same value of δ. All values are in seconds.

Table 6 shows the construction time of our implementation (cst_fully) and the imple-
mentation of Russo et al. (cst_russo). Our implementation is at least 4 times faster
for all texts. It is striking that the construction of cst_russo is especially slow if the
number of sampled nodes is high. An extreme example of this is the highly repetitive
text Einstein, which took more than 16 hours of construction time for cst_russo. This
is because the overhead for adding nodes to the sampled tree is particularly high in the
pointer-based representation that is used in cst_russo.
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Figure 28: Construction time for English and different values of δ.

Figure 28 shows the construction time for the different variants of the FCST and differ-
ent values of δ. The construction of cst_fully_blind is very slow, since the sampling
conditions for the child sampling have to be checked for every child v.α of each sampled
node v.
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5 Conclusion

In this thesis, we implemented three variants of the fully-compressed suffix tree. The
implementations are generic and can be customized with the data structures provided by
the Succinct Data Structure Library. In an experimental study we explored different time-
space trade-offs by varying the node sampling parameter (δ) on different real-world text
inputs. The study showed that we improve on Russo et al.’s prototype implementation
regarding index space, query and construction time. While the improvements compared
to Russo et al. are significant, the navigational operations are still much slower compared
to a regular compressed suffix trees.

Another outcome of our experimental study is that the fully-compressed suffix tree with
sparse depth sampling slightly outperforms the other variants on navigational operations
LCA, slink, and parent. However, operations depth and child are not competitive with
the original proposal.

Our new binary fully-compressed suffix tree improves the time complexity for child queries
from O(log n(log log n)2) (see [11]) to O(log n log log n) using the same asymptotic space
complexity as the fully-compressed suffix tree by Russo et al. This improvement is also
seen in practice, albeit the remaining operations are a bit slower.

Regarding the space consumption of the data structures, there is a significant gap between
theory and practice. As we have shown in the empirical evaluation, the upper bound of
n for the string depth of suffix tree nodes is a rather pessimistic one. Szpankowski [29]
shows a more realistic upper bound of c · log n for a constant c (depending on the text
type) using a probabilistic model.

While we have made significant practical improvements there are still open challenges:
The construction process currently depends on the uncompressed input size and not only
on the size of the final output. The speed of the construction is also still slow compared
to the construction process of the regular compressed suffix tree. Moreover, there is no
efficient way to calculate an ID for a node, like the pre-order index. Therefore it is not
easily possible to attach satellite data to a node.
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